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LIFTING A CIRCULAR MEMBRANE BY UNITARY
FORCES

LUCIO R. BERRONE

ABSTRACT. Let  be a convex membrane. We lift certain parts I" of
its boundary by means of unitary forces while the remaining parts are
maintained at level 0. Call u[l'] the position that the such lifted mem-
brane assumes. When the parts I" are varying on 99 so that their
total length C is preserved, it has been conjectured that the functional
T [Ju(@)] p attains its maximum value for a certain connected arc of
length C. In this paper we present a proof of this conjecture for the
case in which € is a circle and p = 1.

1. INTRODUCTION

Let us consider a convex membrane represented by an open and convex set
2 C R2, which is maintained at level 0 on certain parts Iy of its boundary,
while it is lifted by unitary normal forces at the remaining portions I'; =
8B1(0)\I'g. As it is well known, the displacement u of the membrane is the
solution to the following mixed boundary problem for the Laplacian:

Au(z) =0, z€Q

(1) u(z) =0, =z€Ty
o) =1 zeny

If © has a sufficiently smooth boundary, it is known that problem (1) admits
a classical solution u € C°(Q2) N C2?(€2) (see [11] and the references therein).
Henceforth we write u = u[I'1] to emphasize the dependence of the solution
to problem (1) on the choice of I';. For a given number 0 < C < {09, we
define the family 7(Q,C) as composed by those I'; which are finite subsets
of 502 with total length equals to C. In [3] was conjectured that, for two fixed
numbers C and p such that 0 < C < |69, 1 < p < 400, the maximum of the
LP(8%) norm of '],

@ [l an) ={ (o [ulT1)P ds) 7, 1< p < +o0

¥

supagq |u[l1], p=+o0
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when T'; is varying on F(f2, C), is realized by a connected arc I’ of length C.
In particular, for p = +oo, the conjecture asserts that the maximum height
reached by a convex membrane which is lifted by unitary forces on some
portions I'; of its boundary with constant total measure C, occurs when the
membrane is lifted on a certain connected arc I'; C 992 of length C.

In this paper we show that the conjecture is true for a circular membrane
) = B;(0) and p = 1. Concretely, denoting by u[['1] the solution to problem
(1) for © = B;(0) = B;, we prove that the following result.

Theorem 1. For any number 0 < C < 2=, we have

© poma  ull(0) = ull3](0)

where I't is an arc of length C.

We emphasize that the maximum in (3) is taken over the family F(B1(0),C)
of finite subset of arcs of 0B;(0) with total measure equals to C. Since u[I']
is harmonic in Bj(0), the Mean Value Theorem provides

(4) /3 . i1 = 2Tl

for every 0 < r < 1. Thus, realizing that u[l'y] is continuous up to the
boundary, we can take limits for 7 1 1 in (3) to obtain

(5) /63 u[l'1]ds = 27u[l4](0);

but, as can be easily derived from the Hopf’s lemma ([4], pg. 34), the solution
u[I';] is non-negative and then

LY(8B1) -

[T —ABmuw

therefore, [ju[l']|] = 27u[l1](0) and it is concluded that Theorem 1
L1(a8))

proves the conjecture for {2 = B; and p = 1, as we said above.

Other statements equivalent to Theorem 1 can be easily obtained. For
example, an argument like the previous one, but using the “volumetric” ver-
sion of the Mean Value Theorem instead of (4), shows that the height at
the origin u[I'1](0) of the solution u[I';] can be replaced by the L!(B;) norm
llu[T1]llz1(p,)- This means that the maximum of the mean height of a cir-
cular membrane lifted by unitary forces on portions of constant length C of
its boundary, is attained when an arc of length C is lifted. At the light of
this interpretation, that also the potential energy of a membrane is maximum
when it is lifted at a connected arc should not be a surprise. In fact, by the
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Green'’s formulas, for 0 < 7 < 1 we have

© o= [ wrlaurgas= [ il [ uripas

B,
If we take limits for r 1 1 in (6), using the conditions satisfied at the boundary

by u[l'y] we find
/ u[ly]ds = / [vully])? de,
0B B,

which, after Theorem 1 and the previous remarks, says that also the Dirichlet
integral of u[I'1]; i.e. the potential energy of the membrane, is maximized by
a connected arc I'7 of length C when I'; is varying on F(B1(0),C). Now, we
collect all these equivalent statements of Theorem 1 in the following corollary.

Corollary 2. When I'; varies on the family F(B:1(0),C), the functionals
) To il ,, s
ii): Ty = Jufu]ll, s
iii): Ty = [, |vull]]” dz,
attain their respective mazimum when I'y is an arc of length C.

In the next section, a less immediate equivalence connected to the capacity
of finite unions of closed arcs of the unit circumference serves to the purpose
of proving Theorem 1. Some unsolved problems related to the aforementioned
general conjecture are presented in the final section.

2. PROOF OF THEOREM 1
The proof we shall give for Theorem 1 rely on the following result.

Theorem 1. A closed set T on St, the unit circumference, such that |T'| = C
has a capacity at least equal to sin(C/4), the capacity corresponding to an arc
of length C.

L. V. Ahlfors has attributed Theorem 1 to A. Beurling in [2], pgs. 30-36,
where a proof is provided by employing a symmetrization argument. The clue
of this argument is the fact that Dirichlet integral D(u) = [ B, |vu|? dz does
not increases by circular symmetrization ([2], see also [5], pg. 94). A different
proof using tools from the Geometric Theory of Functions can be found in
Chap. 11 of {9] (see also Problem 36, pg. 146, of [7]).

By using Corollary 2-iii), a direct proof of Theorem 1 using symmetrization
techniques is feasible. Nevertheless, we take another way consisting in to
exhibit the equivalence of theorems 1 and 1. To this end, we need to expose
first some concepts and results on capacities and Green’s functions.

Let us begin by reminding the concept of capacity of a compact set I' C R™.
If @ C R™ is a bounded domain such that 89 is sufficiently regular, there
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exists a harmonic function u defined on the complement R™\2 which verifies
ulaq = 1 and lim|g| 00 u(z) = O (see [4], pg. 27; [6], pg. 330). The capacity
of 2, denoted by cap(f), is then defined as follows:

@ cap(@) =~ [ Fhas= [ |yufds,
aq On R™\Q

where n is the unit outward normal to 8f). For any compact set E, the
capacity cap(E) is defined as the limit limntio cap(f),), where {Q2,} is a
sequence of nested domains with smooth boundary such that N2, Q, = E.
The notion of capacity expressed by (7) corresponds to the idea of capacity
of the isolated conductor § as classically arose in Electrostatic; i.e., to the
ratio of the electrical charge in equilibrium on 2 (given by — [ ‘—g—:‘l ds) to
the value of the potential at its surface (u = 1 on 8f2). However, many other
equivalent definitions have been given for the capacity of a compact set (see
(2], (4], [7], [9], [10] and [12)).

Particularly relevant for our developments are the relationships between
capacity and Green’s functions. A readable presentation of this topic can be
found in the books [2], [9] and [10]. Here, we limit ourselves to point out that
if £ C C is compact and Q is its outer domain; that is, the component of C\E
that contains oo and if we assume that (2 is regular; namely, if {1 is connected
and bounded by a finite number of piecewise analytic Jordan curves; then 2
admits a Green’s function gg with pole at oo ([1], [8]); i.e., a function gg
which is harmonic in Q, it satisfies gg|sp = 0 and its asymptotic behaviour
at oo is of the form

(8) ge(z) =In|z| + v+ O(|z| ')asz = .

Indeed, the Green’s function gg exists under much less restrictive conditions
on the domain Q (see [10], Theorems 9.7 and 9.8, pgs. 205-207). The constant
~ that appears at the right hand side of (8), known as Robin constant of E,
is related to the capacity of E through ([2], [9], [10])

(9) v = —Incap(E).

Now we turn to consider the unit circle B;(0) with its boundary split in two
finite families of arcs I'y and I'y = B;(0)\I'y. A simple relationship between
u[l'1] and gr, is established by our next result.

Lemma 2. Let u[l'1] and gr, respectively be the solution to problem (1) for
B;(0) and the Green’s function of I'y, then

(10) u[l'1] = 2gr,|B, (0)-

Furthermore,

(11) u[l'1](0) = 2gr, !B, (0)(0) = —2Incap(To).
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Proof. We know that 2gr,|p, (o) is harmonic in B;(0) and that it vanishes
on I'y. Then, to prove the equality (10) it will be sufficient to show that
9(2gr,)/0r = 1 on I';. With this purpose, we define the function hg(z) =
9re(z) — gro(1/2) which is harmonic in C\(ToU{0}) and, in view of (8), it has
logarithmic singularities at the points z = 0 and z = co. Moreover, we have
ho(e') = gr,(€*) — gr,(e) = 0, 0 < 8 < 2m. Hence, hi(2) = ho(z) — In|z|

is harmonic in C\I'p and it vanishes on I'y and also for z — oo; thus, the
maximum principle shows that A; = 0, that is

(12) gro(z) — gr,(1/Z) = In|z|, z € C\Io.
By setting z = re'? in (12), we obtain

gr, (re®®) — gr, (r~'e®®) = Inr, re® € C\Ip
and differentiating with respect to r,

i6 1 -1 i 1 . —
Ogr, (re®’) + _289r0(7' e’ = re’’ ¢ C\T.

or T or
If we take re*® € I'; in the last identity, we finally arrive to
2agro (elo) — 1,
or

which shows that 2gr, |5, (o) is the solution u[I'1] to problem (1).
In order to prove (11), from (8) and {9) we deduce that

ar,(z) = In|2| — Incap(To) + O(|z| Hasz = oo;
therefore,
0 = lim (gre() — r,(1/2) ~ I 2]
= gry(0) + lim (= In[1/2] + In cap(To) + O(l])  In 2]
= gr,(0) +Incap(I'y);

i.e., gro|B;(0)(0) = —Incap(To). Together with (10), this equality completes
the proof. O
Now we are in situation to prove Theorem 1.

Proof of Theorem 1. On one hand, (11) shows that
u[l'1](0) = —21ncap(To)

and, on the other, Theorem 1 ensures that cap(T'o) > sin{|Tg| /4) = cap(Tg),
where I'§ is an arc of length |['y| = 2 — C. We conclude that

_ C) = —2Incos (g) = u[T'1)(0),

U[Fl]((]) < —21ncap(F;) = —2Insin (271’

where I'} is an arc of length C. 0O
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3. OPEN PROBLEMS

The conjecture relative to the functional F(B1(0),C) 3 I'1 = [[u[T4]]], we
state in the introduction remains open for p # 1. The general case of the
conjecture for a convex domain {2 and every 1 < p < +o0 is also an open
problem . The following generalization of the Beurling’s result, Theorem
"1, seems to be supportable: let ¥ C R? be a closed convex curve and let
0 < C < |v]; there exists an arc I'* of -y such that if I denotes a finite number
of arcs of y with total length C, then cap(T) > cap(T'™).
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