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LIFTING A CIRCULAR MEMBRANE BY UNITARY
FORCES

LUCIO R. BERRONE

ABSTRACT. Let n be a convex membrane. We lift certain parts r of
its boundary by means of unitary forces while the remaining parts are
maintained at level O. Call u[r] the position that the such lifted mem­
brane assumes. When the parts r are varying on an so that their
total length C is preserved, it has been conjectured that the functional
r t-+ Ilu(r)llp attains its maximum value for a certain COnnectedarc of
length C. In this paper we present a proof of this conjecture for the
case in which n is a circle and p = 1.

1. INTRODUCTION

Let us consider a convex membrane represented by an open and convex set
o ~ ~2, which is maintained at level 0 on certain parts fo of its boundary,
while it is lifted by unitary normal forces at the remaining portions f 1 =
oBI (O)\fo. As it is well known, the displacement u of the membrane is the
solution to the following mixed boundary problem for the Laplacian:

(1)
.6.u(x) = 0,
u(x) = 0,
au(x) - 1ar -

If 0 has a sufficiently smooth boundary, it is known that problem (1) admits
a classical solution u E COCO) n C2(0) (see [11] and the references therein).
Henceforth we write u = u[f 1] to emphasize the dependence of the solution
to problem (1) on the choice of fl' For a given number 0 < C < 100[, we
define the family .1'(0, C) as composed by those f1 which are finite subsets
of 00 with total length equals to C. In [3]was conjectured that, for two fixed
numbers C and p such that 0 < C < 1001, 1 :::;p:::; +00, the maximum of the
U(oO) norm of u[fr],

(2) IIU[fl]IILP(an)={ Uanlu[fIWds)ljp, l:::;p<+oosUPanju[fl]I, p = +00
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(3)

(4)

when rl is varying on F(O, C), is realized by a connected arc rr of length C.
In particular, for p = +00, the conjecture asserts that the maximum height
reached by a convex membrane which is lifted by unitary forces on some
portions rl of its boundary with constant total measure C, occurs when the
membrane is lifted on a certain connected arc rr ~ao of length C.

In this paper we show that the conjecture is true for a circular membrane
0= Br(O) and p = 1. Concretely, denoting by U[rl] the solution to problem
(1) for 0 = Bl (0) = Bl, we prove that the following result.

Theorem 1. For any number 0 < C < 27t",we have

max u[rrJ(O) = u[r;](O),
rIE:F(BI(O),C)

where ri is an arc of length C.

We emphasize that the maximum in (3) is taken over the family F(Bl (0), C)
of finite subset of arcs of aBl (0) with total measure equals to C. Since u[rl]
is harmonic in Bl (0), the Mean Value Theorem provides

r u[rl] ds = 27t"ru[rl](0),J8Br(O)

for every 0 < r < 1. Thus, realizing that u[r1] is continuous up to the
boundary, we can take limits for r t 1 in (3) to obtain

(5)

but, as can be easily derived from the Hopf's lemma ([4]' pg. 34), the solution
u[rl] is non-negative and then

therefore, Ilu[rl]11 = 27t"u[rl](0) and it is concluded that Theorem 1
LI(eBI)

proves the conjecture for 0 = Bl and p = 1, as we said above.
Other statements equivalent to Theorem 1 can be easily obtained. For

example, an argument like the previous one, but using the "volumetric" ver­
sion of the Mean Value Theorem instead of (4), shows that the height at
the origin u[rrJ(O) of the solution u[rl] can be replaced by the £l(Bl) norm
Ilu[rlJlI£l(Br)' This means that the maximum of the mean height of a cir­
cular membrane lifted by unitary forces on portions of constant length C of
its boundary, is attained when an arc of length C is lifted. At the light of
this interpretation, that also the potential energy of a membrane is maximum
when it is lifted at a connected arc should not be a surprise. In fact, by the
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Green's formulas, for 0 < r < 1 we have

7

(6) r r au[f1] 1 20= lf u[f1] ~U[fl] dx = lA u[f1]-a- ds - Ivu[f1]1 dx.~ a~ r ~

If we take limits for r t 1 in (6), using the conditions satisfied at the boundary
by u[f d we find

r u[f1] ds = r Ivu[f1]12 dx,laB1 lB1

which, after Theorem 1 and the previous remarks, says that also the Dirichlet
integral of u[f1]; i.e. the potential energy of the membrane, is maximized by
a connected arc fi of length C when f1 is varying on F(B1(O), C). Now, we
collect all these equivalent statements of Theorem 1 in the following corollary.

Corollary 2. When f1 varies on the family F(B1 (0), C), the functionals

i): f1 I-4llu[f1]11 ,
L1(8Bll

ii): f1 1-4Ilu[fdll ,
L1(B1)

iii): f1 1-4IB1Ivu[f1]12 dx,
attain their respective maximum when f1 is an arc of length C.

In the next section, a less immediate equivalence connected to the capacity
of finite unions of closed arcs of the unit circumference serves to the purpose
of proving Theorem 1. Some unsolved problems related to the aforementioned
general conjecture are presented in the final section.

2. PROOF OF THEOREM 1

The proof we shall give for Theorem 1 rely on the following result.

Theorem 1. A closed set f on Sl, the unit circumference, such that If! = C
has a capacity at least equal to sin(Cj4), the capacity corresponding to an arc
of length C.

1. V. Ahlfors has attributed Theorem 1 to A. Beurling in [2]' pgs. 30-36,
where a proof is provided by employing a symmetrization argument. The clue

of this argument is the fact that Dirichlet integral D(u) = IB1Ivul2 dx does
not increases by circular symmetrization ([2], see also [5]' pg. 94). A different
proof using tools from the Geometric Theory of Functions can be found in
Chap. 11 of [9] (see also Problem 36, pg. 146, of [7]).

By using Corollary 2-iii), a direct proof of Theorem 1 using symmetrization
techniques is feasible. Nevertheless, we take another way consisting in to
exhibit the equivalence of theorems 1 and 1. To this end, we need to expose
first some concepts and results on capacities and Green's functions.

Let us begin by reminding the concept of capacity of a compact set f ~~n.

If n ~ ~n is a bounded domain such that an is sufficiently regular, there
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(7)

exists a harmonic function u defined on the complement Rn V"2 which verifies
ulan = 1 and limlxl~oo u(x) = 0 (see [4], pg. 27; [6]' pg. 330). The capacity
of n, denoted by cap(n), is then defined as follows:

lau 1 2cap(n) = - -a ds = l'Vul dx,an n JRn\n

where n is the unit outward normal to an. For any compact set E, the
capacity cap(E) is defined as the limit limnHoo cap(nn), where {nn} is a
sequence of nested domains with smooth boundary such that n~=1nn = E.
The notion of capacity expressed by (7) corresponds to the idea of capacity
of the isolated conductor n as classically arose in Electrostatic; i.e., to the
ratio of the electrical charge in equilibrium on n (given by - Ian ~~ ds) to
the value of the potential at its surface (u = 1 on an). However, many other
equivalent definitions have been given for the capacity of a compact set (see
[2], [4]' [7], [9], [10] and [12]).

Particularly relevant for our developments are the relationships between
capacity and Green's functions. A readable presentation of this topic can be
found in the books [2], [9] and [10]. Here, we limit ourselves to point out that
if E ~ C is compact and n is its outer domain; that is, the component ofC\E
that contains 00 and if we assume that n is regular; namely, if n is connected
and bounded by a finite number of piecewise analytic Jordan curves; then n
admits a Green's function 9E with pole at 00 ([1]' [8]); Le., a function 9E

which is harmonic in n, it satisfies 9ElaE = 0 and its asymptotic behaviour
at 00 is of the form

(8) 9E(Z) = In Izi + 'Y + O(lzl-1)asz -+ 00.

Indeed, the Green's function 9E exists under much less restrictive conditions
on the domain n (see [10],Theorems 9.7 and 9.8, pgs. 205-207). The constant
'Ythat appears at the right hand side of (8), known as Robin constant of E,
is related to the capacity of E through ([2], [9], [10])

(9) 'Y = -lncap(E).

Now we turn to consider the unit circle B1 (0) with its boundary split in two
finite families of arcs ro and r1 = aB1(0)\rO• A simple relationship between
u[r1] and 9ro is established by our next result.

Lemma 2. Let u[r1] and 9ro respectively be the solution to problem (1) for
B1 (0) and the Green's function of ro, then

(10)

Furthermore,

(11)

u[r1] = 29ro IB, (0)'
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Proof. We know that 2gro IBl (0) is harmonic in BI (0) and that it vanishes
on roo Then, to prove the equality (10) it will be sufficient to show that
a(2gro)jar = 1 on ri. With this purpose, we define the function ho(z) =
gro (z) - gro (ljz) which is harmonic in C\(ro u{O})and, in view of (8), it has
logarithmic singularities at the points z = 0 and z = 00. Moreover, we have
ho(eill) = gro(eill) - gro(eill) = 0, O:S () < 21r. Hence, hr(z) = ho(z) -In Izi
is harmonic in C\ro and it vanishes on ro and also for z ~ 00; thus, the
maximum principle shows that hI = 0, that is

(12)

By setting z = reill in (12), we obtain

gro (reill) - gro (r-Ieill) = In r, reill E C\ro

and differentiating with respect to r,

agro(rei()) ~ agro(r-Iei()) _ ~ i() "ifi\r
J:l + 2 J:l -, re E \L. o·ur r ur r

If we take rei() E r 1 in the last identity, we finally arrive to
'()

2agro(e' ) = 1
or '

which shows that 2gro IBl(O) is the solution U[rI] to problem (1).
In order to prove (11), from (8) and (9) we deduce that

gro(z) = In Izl-Incap(ro) + O(lzl-I)asz ~ 00;

therefore,

o lim (gro (z) - gro (ljz) - In Izl)z~o

gro(O) + lim (-In 11jzl + lncap(ro) + O(lzl) -In Izl)z~o

gro(O) + lncap(ro);

i.e., gro IBl(O)(O) = -lncap(ro). Together with (10), this equality completes
the proof. 0

Now we are in situation to prove Theorem 1.

Proof of Theorem 1. On one hand, (11) shows that

u[rI](O) = -2Incap(ro)

and, on the other, Theorem 1 ensures that cap(ro) 2: sin(lrol j4) = cap(rii),
where rii is an arc of length Irol = 21r- C. We conclude that

u[rI](O) :S -2Incap(r~) = -2lnsin (21r ~ C) = -2 In cas (~) = u[r~](O),

where q is an arc of length C. 0
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3. OPEN PROBLEMS

The conjecture relative to the functional F(B1 (0), C) 3 r 1 f--+ Ilu[r 1] lip we
state in the introduction remains open for p =I 1. The general case of the
conjecture for a convex domain n and every 1 :s; p :s; +00 is also an open
problem. The following generalization of the Beurling's result, Theorem

'1, seems to be supportable: let 'Y ~ ]R2 be a closed convex curve and let
o < C < I'YI;there exists an arc r* of'Y such that if r denotes a finite number
of arcs of 'Ywith total length C, then cap(r) 2: cap(r*).
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