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Abstract. Firstly, we prove a pointwise comparison result for the suitable symmetrized problem
that depends on a small positive parameter A. Then, by these results and by the Schwarz symmetrization,
we obtain some asymptotic relationship between the solutions Ue of a general e - problem and a sequence
of real numbers Ae. Finally, it is shown an application the preceding results to getting a priori estimates
in the homogenization theory.

1. Introduction and statement of problem

Let 0. be a bounded open set in RN (N ~ I) and p and p' be two real numbers,

I < p < +00, I/p + I/p' = 1. We consider the general e - problem (e > 0) for
quasilinear elliptic equations of Leray - Lions type with p - growth in the gradient:

(I)
in 0.,

{ Aeue + Fe(ue, 'Vue) = 0Ue E Wci,P(Q) nV'O(Q),

where Ae is a family of the operators of Leray - Lions type (see [10]) from WcioP(Q),
into W-l,p (0.), and Fe is a family of the nonlinear operators of Nemytski type from

wci,P(Q) n£00(0.) into £1 (0.), which satisfy:

N 8
Aeu = - L 8xAe,;(x, u(x), 'Vu(x)) and Fe(u, 'Vu)(x) = fe(x, u(x), 'Vu(x)).

;=1 I

(2)
The families ofCaratheodory functions Ae,i andfe from 0. x R X RN into R, for every
e > 0 satisfy the following properties:
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N

3ae > 0, 'v'1] E R, 'v'~ ERN, I>e,i(X, 1],~gi? ae I ~ IP, a.e. in Q, (5)
i=1

(8)

3fe,o > 0, 'v'1] E R, 'v'~ ERN, Ife(x, 1],~) l::;;fe,o(1+ I ~ IP), a.e. in Q. (6)

Under the assumptions (2) - (6), for every f > 0 we have the existence of a
solution Ueof the equation (1) (see for example [5]' [6], [7] and [13]-[14]).

Let Ae be a sequence of real numbers defined by

Ae = f~:, where ae andfe,o are defined in (5) and (6). (7)

In this note we give all details and proofs of the theorems which were announced
in the author's note [12]. Precisely, we shall investigate the asymptotic behaviour

in Wci,p(Q) n LOO(Q) of the solutions Ue from (1) with respect to the asymptotic
behaviour of Ae from (7). That is to say, we want to show that the precise boundeness
in R and the convergence to 0 in R of a sequence Ae from (7), implies the precise

boundeness in Wci,p(Q) n LOO(Q) and the convergence to 0 in Wci,P(Q) n LOO(Q) of
a sequence Ue from (1). We remark that the families of operators Ae and Fe from
(1) - (6) have only one asymptotic condition, that is, the asymptotic condition to
(7) (see (9) and (12)).

About some investigations and applications of various f - problems in the
homogenization of partial differential equations see [1], [2]' [3] and [4].

Next, we consider a symmetrized problem with a parameter A. > 0:

{ -div(I'VvA Ip-2 'VvA) - A(1+ I 'VvA IP)= 0, in Q# f{O},

VA E W6,P(Q#) nLOO(Q#),

vA. is positive, radially symmetric and decreasing function,

where Q# is N-dimensional ball centered at the origin 0 with I Q# [=1 Q I (I A I
denotes the Lebesgue measure of a measurable set A in RN).

On the existence and the uniqueness results, and properties concerning the
solution VA of the equation (8) see Lemma 4 below.

Firstly, we shall prove:

THEOREM 1. Let Ue be a solution of the equation (1) and let (2) - (6) be
satisfied. /ffor Aefrom (7) exists a "small enough "constant {3 > 0 such that

Ae ::;; {3, 'v'f > 0, (9)

then there exist two constants cI = CI ((3) > 0 and C2 = C2({3) > 0 such that the
following a priori estimates hold true:

II Ue IIL'Xl(Q)::;; CI({3) and II 'Vue IILP(Q)::;; C2({3), 'v'f > O. (10)

Moreover, the constants CI and C2 satisfy:
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where vf3is the unique solution of the equation (8) for A = {3.
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The assumption, (3 is "small enough", is needed in the lemma 4 below.

Next, we shall obtain the limit behaviour of Ue from (1) with respect to the limit
behaviour of Ae from (7):

THEOREM2. Let Ue be a solution of the equation (1) and let (2) - (6) be
satisfied. If Aefrom (7) satisfies:

Ae -+ 0, as £ -+ 0,

then the following estimate holds true:

Ue -+ 0 strongly in W6,P(Q) nLoo(Q).

The proofs of the preceding theorems will be made in Section 3.

(12)

(13)

A GENERALIZATION.Now, we give some generalization of the results from
Theorem 1 and Theorem 2 to a slightly general equation with p - growth in the
gradient:

{ Aeue + He(ue) + Fe(ue, VUe) = 0 in Q,Ue E W6,P(Q) nLoo(Q),
(14)

where the families of operators Ae and Fe are as in the equation (1), and He from
Loo(Q) into L1(Q) satisfies:

He(u)(x) = he (x, u(x)) a.e. in Q, (15)

where the family he of Caratheodory function from Q x R into R, for every £ > 0
satisfies:

{ \11/E R, he (x, 1/)sgn(1/) ~ 0 a.e. in Q;
::lhe,oELI (Q), he,o ~ 0, \1M > 0, ::lCe= Ce(M) > 0,
\11/ E R, I 1/ I~ M, I he(x, 1/) I~ Ce(M)he,o(x) a.e. in Q.

(16)

THEOREM3. Let Uebe a solution of the equation (14) and let Ae be defined by
(7). Let (2) - (6) and (15) - (16) be satisfied. If Ae satisfies (9) then for Uewe have
(10) - (11). Also, if Ae satisfies (12) then for Uewe have (13).

Thanks to the proofs of Theorem 1 and Theorem 2, the proof of the preceding
theorem we leave to reader.

AN APPLICATIONTOTHEHOMOGENIZATIONTHEORY.It is very well known that
in many problems of the classical and abstract homogenization theory (see [1], [2],
[3] and [4]), where ae andfe,o from (5) - (6) are independent of £ (therefore (9) will
be satisfied), it is very important to obtain a priori estimates which are independent
of a small parameter £ (for p = 2 see [2]). These a priori estimates, in this note, we
obtain particularly from the general result of Theorem 1. In this direction we will
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replace the assumptions (5)-(6) with the following:
N

:3a > 0, \11'/ E R, \I~ ERN, LAE,i(x, 1'/, ~gi~a I ~ IP, a.e. in n, \Ie> 0,
i=1

(17)
:3fo > 0, \11'/ E R, \I~ ERN, IfE(x, 1'/,~) l:::;;fo(1+ I ~ IP), a.e. in n, \Ie> O.

(18)
where the ratio fo/ a is "small enough" (see the proof of lemma 4 below).

According to the result of Theorem 1, it is easy to check that the following
result holds true:

THEOREM 4. Let UE be a solution of the equation (1) and let (2) - (4) and

(17) - (18) be satisfied. Then there exists two positive constants CI and Cz such that

the following a priori estimates hold true:

II UE 11L',o(Q):::;; CI and II VUE IILP(Q):::;; cz, \Ie> O. (19)

Moreover, there exists a small constant A > 0 independent of e such that the

constants Cl and Cz satisfy:

CI =11 VA IILoo(Q') and Cz =11 VVA IILP(Q')'

where VA is the unique solution of the equation (8).

2. Comparison results with a parameter

(20)

This section deal with the comparison results from Lemma 3 and Lemma 5
below. Before giving the proofs of these results, we first repeat a comparison
principles of two Lemmas from [12].

For fixed a, bE R, a < b and for every c E (a, b), let Wa,c denotes an arbitrary
subset of C([a, c]) - denotes space of all continuous functions on [a, c) and let K be
an operator from Wa,c into C([a, c]) which is independent of c and satisfies:

{for every c E (a, b) there exists a = a(c) E. (0, 1) such that (21)II Kcp - KlJIIILOO(a,c):::;;a(c) II cp - lJIIILOO(a.c) \lcp, lJI E Wa,c'

We first give a local result in any [a, b) for the sub { sup} -comparison:

LEMMA 1. Assume that (21) holds and let cp, lJI E Wa,b be two arbitrary

functions which satisfy: the restrictions cp I[a,c].lJI I[a,c]E Wa,c for all c E (a, b) and

{ cp(a) = lJI(a),cp(s) :::;;(Kcp)(s), {cp(s) ~ (Kcp)(s)}, lJI(s) = (KlJI)(s), \Is E [a, b).

(22)
Then

{there exists no c E (a, b) such thatcp =I lJI in (a, c) and cp(s) ~ lJI(s), { cp(s) :::;;lJI(s)}, \Is E [a, c). (23)
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Let ao, bo E R, ao < bo be two fixed numbers. Now, we give a global result on
lao, bo] for the sub { sup} -comparison:

LEMMA 2. Let cP, \If E C([ao, bo]) be two arbitrary functions which satisfy:

{ cp(ao) = \If(ao),foralla, E [ao,bo)forwhichcp(a,) = \If(a,)

there exists b, = b, (a,) E (a" bo] whichsatisjies: (24)
there exists no c E (a" bd such that

cp i= \If in (at, c] and cp(s) ~ \If(s), { cp(s) ~ \If(s)}, "Is E [a" c].

Then we have

cp(s) ~ \If(s) , { cp(s) ~ \If(s) }, "Is E lao, bolo (25)

For the proofs of Lemma 1 and Lemma 2 see in [12].
Now we consider a nonlinear ordinary differential equation with a parameter

A> 0:

{ dw)../ds = 1 + CO(A)S/(-l+'/Nlwf' (s), "Is E (0, I Q 1],

, '
wA(O) = 0 and # (-l+'/Nlwf (s) --* 0 as s --* 0,

where wA : [0, I Q I] --* [0, +00), and Co (A) defined by
,

CO(A) = (A/(NCit))p .

(26)

(27)

Here CN denotes the measure of N-dimensional unit ball in RN. One can show that

there exists a unique function wA E C' ([0, I Q I]) which satisfies (26), where A is
"small enough" (see the proof of lemma 4 below).

We are now able to prove:

LEMMA 3. Let A and J.L be two real numbers, 0 < A < J.L and let WA and wJl be

two corresponding unique solutions of the equation (26). Then we have:

WA(s) ~ wJl(s), "Is E [0, I Q 1]. (28)

Before giving the proof of Lemma 3, we will need some technical results.
In this direction, we will use repeatedly the following notations: let the real

numbers A, a, b, m and M satisfy: A > 0, a E [0, I Q I), b E (a, I Q 1]; for
a = 0 let m = 0 and M > 0; for a > 0 let m > 0 and M ~ m/ a. Next, let set
Za,b = Za,b(m, M) and operator KA = KA (a, m) from Za,b into C([a, b]), be given by:

Za,b = {cp: [a,b] --* [0,+00): cp E C([a,b]), cp(a) =m, cp(s) ~ Ms on [a,b]},

(29)

(30)1s , ,(KACP)(s)=m-a+s+Co(A) a rIJ(-I+'/Nlqf'(r)dr, VCPEZa,b,

where CO(A) was defined by (27).
With these notations we now can state the following technical results:
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PROPOSITION 1. For all A > 0, a E [0,1 Q I) and any m, M as in (29) - (30),
we have:

{for every c E (a, I Q IJ are Za,e ~ C([a, c]), K;,Za,e ~ C([a, c]) and

there exists b = b(a, M, A) E (a, I Q IJ such that
for every c E (a,b) there exists a = a(a,c,M,A) E (0,1) such that

II K;.qJ - K;.lJIIIU'O(a,e)::;a(a,c,M,A) II qJ -lJIIILoo(a,e), tlqJ, lJIE Za,e'
(31)

Proof. On the similar way as in the proof of (19) from [12], we prove (31). D

PROPOSITION 2. Let A and Jl be two real numbers, 0 < A < Jl. Then for any

fixed a, b, m, M as in (29), we have:

(K;.qJ)(s) ::; (KJlqJ)(s), tis E [a,bj, tlqJ E Za,b. (32)

Proof. From A < Jl follows CO(A) < Co(Jl) (see (27)) which together
with (30) immediately implies (32) (K;.. = K;..(a,m), KJl = KJl(a,m) and Za,b =
Za,b(m,M)). D

PROPOSITION 3. Let A and Jl be two real numbers, 0 < A < Jl and let ill;..

and illJl be two corresponding unique solutions of the equation (26). Then for all
a E [0, I Q I) for which ill;.. (a) = illJl(a) there exists M as in (29) such that for
m = ill;..(a) = illJl (a) and any b = b(a) E (a, 1Q I] we have:

ill;., illJl E Za,b and ill;.. ira,el' illJl l[a,elE Za,e, tic E (a, b), (33)

ill;..(s) ::; (KJlill;")(S) and illJl(S) = (KJlillJl)(S), tis E [a,b], (34)

ill;..(S) = (K;.ill;..)(S) and illJl(S) ~ (K;"illJl)(S), tis E [a, bj. (35)

Proof. Let a E [0, 1 Q I) and ill;. (a) = illJl (a) = m. Integrating (26) over [a, s],

from (30) we have that ill;. = K;..ill;..and illJl = KJlillJl' Now by these equalities and
by (32) we obtain (34)-(35). Finally, we have (33) for M = max{M;..;MJl} where
M;..and MJl we obtain by Remark 1 from [12]. D.

Proof of Lemma 3. With the help of the Proposition 1 and Proposition 3, we
have in the particular case that (21)-(22) hold true on [a, b] for all a E [0, I Q I) for
which ill;.. (a) = illJl(a), b = b(a, M, Jl) -from (31), M -from (33), qJ = ill;., lJI= illJl'
K = KJl(a,m), m = ill;..(a) = illJl(a) and Wa,e = Za,e(m,M) (see (29)-(30) for
A = Jl). Then from Lemma 1 and (23) in this particular case, we have (24) for
ao = 0, bo =1 Q I,qJ = ill;.. and lJI= illJl' Then from Lemma 2 and (25) immediately
follows (28). D

LEMMA 4. There exists a unique solution v;. E C(Q#)nWI,OO(Q#)nC2(Q# /{O})
of the problem (8), where A is "small enough". Moreover v;.. depends only on the

constants N, p, A, CN, 1 Q I and for all x E Q# and for all s E (0, I Q I] we have:

C (A) l1Q',. ,v;.. (x) = VHCN I X IN) and vHs) = T s rP (-I+I/N)illf /P(r)dr, (36)
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where wA is the unique solution of the equation (26) and Co (A ), A, CN from (27).

Remark. In the recently author's note [14] was remarked that the preceding
existence result for the equation (8) and the existence result for the equation (26)
are in fact only valid under the following supplementary hypothesis: A is "small
enough", that is to say if A satisfies:

11N '

A ~ NCN ( p )1//
'" 21 Q# 11/N N(p' + 1) 0

This fact obviously follows from the classical Banach fixed - point theorem (on this
classical technique, see for example the proof of Theorem 1, [12], ppo 364). But, in
the case for A "big enough" it seems it is not elementary to prove that there is no any
bounded solution of (8) and (26). For more details, see [8]. 0

Summarizing the above results of Lemma 3 and Lemma 4, we can prove:

LEMMA 5. Let A and Jl be two real numbers, 0 < A < Jl and let VA and

vJl be two corresponding unique solutions of the equation (8). Then the following
comparisons hold true:

VA (x) ~ vJl (x) in Q# and II VA IILOO(Q') ~ II vJl IILOO(Q')' (37)

II 'VvA IILP(Q') ~ II 'VvJl IILP(Q') 0 (38)

Proof. Since CO(A)/A < Co(Jl)/Jl (see (27)) then according to (28) and (36)
obviously follows (37). Also we have:

3. Proofs of the main results

In this part, we shall give the proofs of Theorem 1 and Theorem 2. As the
first, the relation between the general e - problem (1) and the suitable symmetrized
problem (8) for A = Ae, where Ae is from (7), is given by the following result:
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LEMMA6. Let Ue be a solution of the equation (1) and let (2) - (6) be satisfied.

Then a priori estimates hold true:

II Ue IIL'X'(Q)~II Ve IILoo(Q.) and II VUe IILP(Q)~II VVe IILP(Q.), \IE> 0, (39)

where Ve is the unique solution of the equation (8) for A = Ae and Ae isfrom (7).

Proof. This proof immediately follows, using Theorem 3 from [12]. D

THE PROOFOFTHEOREM1. Thanks to (9) and (37)-(38) for A = Ae (vA = ve)

and Jl = {:3 (vJl = vf:l), from (39) we have:

II Ue IILoo(Q)~1I Ve IILoo(Q.)~11vf:l IILoo(Q.)= CI({:3), \IE> 0, (40)

II VUe IILP(Q)~II VVe IILP(Q.)~II VVf:l IILP(Q.)= C2({:3), \IE> 0, (41)

which prove the desired results. D

THE PROOFOF THEOREM2. According to (12) we have particularly that there
exists a constant {:3 > 0 such that Ae ~ {:3, \IE > O. With the help of (39), (36) - for
A = Ae (where Ae from (7)) and (28) - for A. = Ae, (wA = we) and Jl = {:3,since
Co(Ae)/Ae -+ 0 as Ae -+ 0 (see (27)), we obtain:

II Ue IILOO(Q)~IIVe IILoo(Q.)= V; (0+) = CO~Ae) rlQI ,-l"(-I+I/Nlwf'/P(r)dr ~he Jo+

s::. CO(Ae)lIQ',-l"(-I+'/N)oJ:,'/P(r)dr -+0 as A-+O~ , f:l e ,he 0+

Also we deduce:

llQI d *II VUe 11i.P(Q)~11VVe 1Ii.P(Q.)= (NC"t)P sP(I-I/N) I dVe IP ds =0+ s

= (NC'jN)p(CO~Ae))p rlQ1 sP' (-I+I/Nl wf' (s)ds ~he Jo+

~ (NC'jN)p(Coye))p rlQ1sP'(-I+I/NlwfJ' (s)ds -+ 0 as Ae -+ O. De Jo+
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