CERTAIN INTERESTING IMPLICATIONS OF T. J. RIVLIN'S RESULT ON MAXIMUM MODULUS OF A POLYNOMIAL

V. K. Jain, Kharagpur, India

Abstract. Let f(z) be an arbitrary entire function and $M(f,r) = \max_{|z|=r} |f(z)|$. For a polynomial p(z) of degree n, having no zeros in |z| < 1, Rivlin had obtained

$$M(p,r) \geqslant \left(\frac{r+1}{2}\right)^n M(p,1), \quad r \leqslant 1.$$

Using this and various associated results, we have obtained precise relationship between $M(p, \rho)$ and M(p, 1) for a polynomial p(z) having all its zeros on |z| = k, k > 0. Some sort of a converse of Rivlin's result has also been obtained.

1. Introduction and statement of results

Let f(z) be an entire function and $M(f, r) = \max_{|z| = r} |f(z)|$. If p(z) is a polynomial of degree n, then as an easy consequence of maximum modulus principle, we have

THEOREM A. For a polynomial p(z) of degree n

$$M(p,r) \geqslant r^n M(p,1), \quad r \leqslant 1, \tag{1.1}$$

with equality only for $p(z) = \lambda z^n$.

For polynomials not vanishing in |z| < 1, Rivlin [3] improved (1.1) and proved

THEOREM B. If p(z) is a polynomial of degree n, having no zeros in |z|<1, then

$$M(p,r) \geqslant \left(\frac{1+r}{2}\right)^n M(p,1), \quad r \leqslant 1,$$

with equality only for the polynomial $p(z) = \left(\frac{\alpha + \beta z}{2}\right)^n$, $|\alpha| = |\beta|$.

Govil [2] obtained the following generalization of Theorem B

THEOREM C. If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then for $0 \le r \le \rho \le 1$,

$$M(p,r) \geqslant \left(\frac{1+r}{1+\rho}\right)^n M(p,\rho).$$

The result is best possible and the equality holds for the polynomial $p(z) = (1+z)^n$.

Using Theorem C, Govil [2] obtained

Mathematics subject classification (1991): 30C10, 30A10.

Key words and phrases: Maximum modulus, zeros.

THEOREM D. If p(z) is a polynomial of degree n having all its zeros on |z|=1, then for $0 \le r \le \rho \le 1$ and for $1 \le \rho \le r$,

$$M(p,r) \geqslant \left(\frac{1+r}{1+\rho}\right)^n M(p,\rho).$$

The result is best possible and equality holds for the polynomial $p(z) = (1+z)^n$.

In this paper, we have firstly considered polynomials having their zeros on |z| = k and obtained precise relationship between $M(p, \rho)$ and M(p, 1) — something similar to the Theorem D. More precisely, we have proved

THEOREM 1. Let p(z) be a polynomial of degree n, having all its zeros on the circle C: |z| = k, k > 0. If $k \ge 1$, then

$$M(p,\rho) \geqslant \left(\frac{\rho+k}{1+k}\right)^n M(p,1) \text{ for } 0 \leqslant \rho \leqslant 1 \text{ or } \rho \geqslant k^2,$$
 (1.2)

$$\leq \left(\frac{\rho+k}{1+k}\right)^n M(p,1) \text{ for } 1 \leq \rho \leq k^2,$$
 (1.3)

and if k < 1, then

$$M(p,\rho) \geqslant \left(\frac{\rho+k}{1+k}\right)^n M(p,1) \text{ for } 0 \leqslant \rho \leqslant k^2 \text{ or } \rho \geqslant 1,$$
 (1.4)

$$\leq \left(\frac{\rho+k}{1+k}\right)^n M(p,1) \text{ for } k^2 \leq \rho \leq 1.$$
 (1.5)

Equality holds in (1.2), (1.3), (1.4) and (1.5) for $p(z) = (z + k)^n$.

By taking $\rho = k^2$ in Theorem 1, we easily obtain

CORROLARY 1. Let p(z) be a polynomial of degree n, having all its zeros on |z| = k, k > 0. Then

$$M(p,k^2)=k^n M(p,1).$$

Now we try to say something about converse of theorem B. The example $p(z) = \left(z + \frac{1}{2}\right)(z+3)$ shows that converse of Theorem B is false. However, we have the following result in the converse direction.

THEOREM 2. If p(z) is a polynomial of degree n such that

$$M(p,r) \geqslant \left(\frac{1+r}{2}\right)^n M(p,1),\tag{1.6}$$

for all $r \in (r_0, 1)$, where $r_0 \in (0, 1)$, then p(z) can not have all its zeros in |z| < 1.

2. Lemmas

For the proofs of the theorems, we require the following lemmas.

LEMMA 1. If p(z) is a polynomial of degree n, having no zeros in |z| < k, k > 0, then

$$M(p,r) \geqslant \left(\frac{r+k}{1+k}\right)^n M(p,1), \quad r \leqslant \min(1,k^2).$$
 (2.1)

Equality holds in (2.1) for $p(z) = (z + k)^n$.

This lemma is due to Govil [2].

LEMMA 2. If p(z) is a polynomial of degree n, having no zeros in |z| < k, $k \ge 1$, then

$$M(p,R) \le \left(\frac{R+k}{1+k}\right)^n M(p,1), \quad 1 \le R \le k^2.$$
 (2.2)

Equality holds in (2.2) for $p(z) = (z + k)^n$.

This lemma is due to Aziz and Mohammad [1].

LEMMA 3. If p(z) is a polynomial of degree n, having all its zeros in $|z| \leq k$, $k \leq 1$, then

$$M(p,r) \le \left(\frac{r+k}{1+k}\right)^n M(p,1), \quad k^2 \le r \le 1.$$
 (2.3)

Equality holds in (2.3) for $p(z) = (z + k)^n$.

Proof. The polynomial

$$q(z) = z^n \overline{p\left(\frac{1}{\overline{z}}\right)},\tag{2.4}$$

will have no zeros in $|z| < \frac{1}{k}$ and so, by Lemma 2

$$M(q,R) \leqslant \left(\frac{R+\frac{1}{k}}{1+\frac{1}{k}}\right)^n M(q,1), \quad 1 \leqslant R \leqslant \frac{1}{k^2},$$

i.e.

$$R^n M\left(p, \frac{1}{R}\right) \leqslant \left(\frac{R + \frac{1}{k}}{1 + \frac{1}{k}}\right)^n M(p, 1), \quad 1 \leqslant R \leqslant \frac{1}{k^2}.$$

On replacing R by $\frac{1}{r}$, Lemma 3 follows.

Remark. Arguments used in proof of Theorem B were used to obtain Lemma 1 and Lemma 2.

3. Proofs of the theorems

Proof of Theorem 1. The polynomial q(z), given by (2.4), will have all its zeros on $|z|=\frac{1}{k}$, and so, by Lemma 1

$$M(q,r) \geqslant \left(\frac{r+\frac{1}{k}}{1+\frac{1}{k}}\right)^n M(q,1), \quad r \leqslant \min\left(1,\frac{1}{k^2}\right),$$

i.e.

36 V. K. Jain

$$r^n M\left(p, \frac{1}{r}\right) \geqslant \left(\frac{r + \frac{1}{k}}{1 + \frac{1}{k}}\right)^n M(p, 1), \quad r \leqslant \min\left(1, \frac{1}{k^2}\right).$$

On replacing r by $\frac{1}{R}$, we obtain

$$\frac{1}{R^n}M(p,R)\geqslant \left(\frac{\frac{1}{R}+\frac{1}{k}}{1+\frac{1}{k}}\right)^nM(p,1),\quad \frac{1}{R}\leqslant \min\left(1,\frac{1}{k^2}\right),$$

i.e.

$$M(p,R) \geqslant \left(\frac{R+k}{1+k}\right)^n M(p,1), \quad R \geqslant \max(1,k^2).$$
 (3.1)

Now ineq. (1.2) and (1.4) follow from Lemma 1 and inequality (3.1). Ineq. (1.3) follows from Lemma 2. Ineq. (1.5) follows from Lemma 3.

This completes the proof of Theorem 1.

Proof of Theorem 2. On the contrary, let p(z) have all its zeros in |z| < 1. Then p(z) will have all its zeros in $|z| \le k$, for some k(< 1), also. And so, by Lemma 3

$$M(p,r) \le \left(\frac{r+k}{1+k}\right)^n M(p,1), \quad k^2 \le r < 1$$

 $< \left(\frac{r+1}{2}\right)^n M(p,1), \quad k^2 \le r < 1,$

which contradicts (1.6), thereby proving Theorem 2.

REFERENCES

- A. Aziz and O. G, Mohammad, Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc. 81 (1981), 549-553.
- [2] N. K Govil, On the maximum modulus of polynomials, Jour. Math. Anal. Appl. 112 (1985), 253-258.
- [3] T. J. Rivlin, On the maximum modulus of polynomials, Amer. Math. Monthly 67 (1960), 251-253.

(Received July 10, 1997) (Revised January 5, 1998) Mathematics Department I.I.T., Kharagpur - 721302 India