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A NEW PROOF OF A THEOREM
CONCERNING DECOMPOSABLE GROUPS

Wojciech Chojnacki, Warszawa, Poland and Adelaide, Australia

Abstract. We give an elementary proof of the following result: If G is a compact non-zero Abelian
group with dual isomorphic to a subgroup of Q, such that UU (—U) = G\ Gy and U N (~U) = B for
some open subset U C G, where G5y = {a € G:2a = 0}, then G is topologically isomorphic with T.

1. Introduction

Let G be a locally compact Abelian group with dual G. Denote by G® and
G2) the image and kernel of the homomorphism G 3 a — 2a € G, respectively.
Given a subset X C G, let

—X={ae G -aeX}

In agreement with the terminology introduced in [1], G will be said to be decom-
posable if there exists an open subset U C G such that U U (-U) = G\ G(y) and
Un(-U)=20.

Let T be the multiplicative group of complex numbers with unit modulus,
endowed with the usual topology. Let Q be the additive group of rational numbers,
equipped with the discrete topology. For each n € N, let Z(n) be the cyclic group
with n elements. Assume that the Z(n) are endowed with the discrete topology.
Given Abelian groups G; (i = 1,...,n), denote by Gy x - -+ x G, the direct product
of the G;. For a cardinal number m and a compact Abelian group H, designate by
H™ the direct product of m copies of H, enriched with the product topology (under
which H™ is compact).

In {1] the following characterisation of decomposable compact Abelian groups
is given:

THEOREM 1. Let G be a compact Abelian group. Then G is decomposable if

and only if either (G)® is a countable torsion group or G is topologically isomorphic
with T x Z(2)™ x F, where m is a cardinal number and F is a finite Abelian group.

The above theorem is a consequence of a number of results describing certain
subclasses of the class of all decomposable compact Abelian groups. One of these
results reads as follows:
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THEOREM 2. Any decomposable compact connected Abelian group different
from a singleton is topologically isomorphic with T.

The main part of the proof to Theorem 2 is embodied by the following result:

THEOREM 3.  Suppose that G is a decomposable compact Abelian group
different from a singleton. Suppose, moreover, that G is isomorphic with a subgroup
of Q. Then G is topologically isomorphic with T.

The proof of Theorem 3 given in [1] (as part of the proof to Proposition 4.1)
is short but quite involved. This note offers a longer but more elementary proof.
While the first of these proofs utilises a rather special result concerning compact
cancellative semigroups, the second uses only standard tools from general topology.
This notwithstanding, both proofs invoke freely a basic lore on locally compact
Abelian groups.

2. Proof of the main result

This section gives the proof of Theorem 3 alluded to above.

Proof of Theorem 3. We commence by showing that, for every a € G, G\ {a}
is connected. Since G is isomorphic with a subgroup of Q, it is torsion free. Hence,
being compact, G is connected (cf. {2, Thm. 24.25]). We see that G is a continuum
with more than one element. By a theorem of Moore-Wallace [4, 6] (see also (3, §47,
Sec. IV, Thm. 5)), any continuum different from a singleton contains at least two
elements, each of which has a connected complement. Therefore there exists b € G
for which G\ {b} is connected. Now, to conclude that G \ {a} is connected for each
a € G, it suffices to observe that G \ {a} is the image of G \ {b} via the translation
by a — b (defined as G 2 h — a — b+ h € G), which is a homeomorphism.

Denote by 0 the neutral element of G. Let U be an open subset of G such that
UU(-U) = G\Gpyand UN(=U) = 0. Itis clear that G\ G(y) is disconnected. In
view of the assertion established in the preceding paragraph, G \ {0} is connected.
Therefore Gz \ {0} is non-empty.

Let p be a monomorphism mapping G into Q. For each n € N, let K,, be the
cyclic subgroup of Q given by

K, ={k/n!| ke Z}
and let T, be the subgroup of G given by
T, = o' (K. " p(G)).

It is clear that, for each n € N, I, is cyclic and I', C I',,;. Furthermore, G =
UnZi -

We now prove that G,y \ {0} has precisely one element. Select g € G \ {0}
arbitrarily. Given n € N, let x, be a generator of I',. Since 2g = 0, we have
(g, %) = =1 for each n € N. Here (-, -) represents the pairing between elements
of G and G. Now either there is a sequence {n; }xen in N diverging to infinity such
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that (g, X»,) = 1 for each k € N, or (g, x») = —1 for all but finitely many n € N.
Suppose that the first possibility holds. Since {I',}.cn is an increasing sequence
of subgroups eventually exhausting all of G, any given y € G can be written as
Y = IXn, for some k,I € N. It then follows that (g,y) = 1, which, in view of the
arbitrariness of y, implies that g = 0, a contradiction. The first possibility being
excluded, let ng € N be such that (g, x,) = —1 for each integer n greater than ng.
Giveny € G, choose I € N and n € N with n > ng such that ¥ = Ix,. Then, clearly,
(g,7) = (—1), which shows that (g, ¥) does not depend on the particular choice of
g- Consequently, g is uniquely determined, and so Gy) \ {0} is a singleton.

Denote by g the unique element of G,y \ {0}. We clearly have G(;) = {0, g}.
For each subset X C G, denote by X the boundary of X relative to G. We now show
that

oU = {0, g}. (1)
It is evident that OU C {0,g}. Since the inversion G 2 a + —a € Gis a
homeomorphism, we have 9(—U) = —0U. Taking into account that g = —g, we

see that 3(—U) = dU. Now U C (U U (—U)), since U is open. Moreover,
(UU(-U)) coUuud(-U)=2aU.

1t follows that 3U = 8(U U (—U)). In particular, the set U U (—U) U 8U is closed.
Suppose that {0,g} \ U # 0. Being a finite set, {0, g} \ U is closed. Since G is
the union of {0, g} \ U and U U (—U) U 8U, we arrive at a contradiction with G
being connected. Thus {0, g} \ U = 0, establishing (1).

We contend that UU {0} is connected. Suppose, on the contrary, that UU{0} =
A U B, where A and B are non-empty disjoint closed subsets of U U {0}. In view of
(1), UU {0} is closed in G \ {g}. Correspondingly, A and B are closed in G \ {g}.
It is now clear that A U (—A) and B U (—B) are non-empty disjoint closed subsets of
G\ {g}, whose union is the whole of G\ {g}. But this contradicts the connectedness
of G\ {g} (which follows from the assertion from the first paragraph) and establishes
the contention.

Let

Vi=(U+gn{-U) and Vp,=U+g)nU

We claim that V) is not empty. Since G is compact and connected, it is also divisible
(cf. [2, Thm. 24.25)). In particular, g = 24 for some k € G. Since g is non-zero, we
see that i is a member of G \ G(2), and so either h or —# falls into U. If h € U, then,
taking into account that 2g = 0, we have —h = h + g, whence h € V,. If —h € U,
then, in view of h = —h + g, we have —h € Vy. In either case, V) is non-empty, as
claimed.

We shall now focus our attention on the set V; U {0, g}. We first show that it is
closed in G.

Given asubset X C Gand a € G, let

X+a={beGb—-acX}
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Clearly, since G is connected, 8V is non-void. We have
8V, Cc (U +g)ud(-U) ={0,g}.

Since V) is invariant under the composition of the inversion and the translation by
g, so too is dV;. It is easily seen that any non-empty subset of 9V, invariant under
the same composition coincides with &V;. Therefore 8V, = {0, g}, implying that
Vi U {0, g} is closed.

We now show that V; U {0, g} is connected. Suppose, on the contrary, that
Vi U{0,g} = AU B, where A and B are non-empty disjoint closed subsets of
Vi U {0,g}. Since V; U {0, g} is closed in G, it follows that A and B are closed in
G too. With no loss of generality, we may assume that 0 € A. Then, necessarily,
g € B. For otherwise B would be an open subset of V) and, since V; is open in G, B
would be open in G; as B is also closed in G, we would thus arrive at a contradiction
with G being connected. Now A \ {0} is non-empty for otherwise {0} would be an
open subset of V| U {0, g} contrary to the fact that 0 € V; \ V. Since

A\{0} c (U+g)uU{e} c G\ {0}

and since A is closed in G, it follows that A \ {0} is a closed subset of (U +g) U {g}.
On the other hand, since 8V, is contained in (U + g) U U = {0, g}, we find that
VoU{g} isaclosed subset of (U+g)U{g}. AsBisclosedin G, BUV, = BUV,U{g}
is closed in (U + g) U {g}. We thus see that A\ {0} and BU V, are closed non-empty
subsets of (U + g) U {g}. Clearly, A \ {0} and BU V; are disjoint and their union
is all of (U + g) U {g}. This is, however, incompatible with the fact that, being
the translate by g of the connected set U U {0} (recall that the connectedness of
U U {0} was already shown earlier), (U + g) U {g} is connected. The connectedness
of V; U {0, g} is thus established.

In preparation for the next step, we show now that if V, is non-void, then both
V> U {0,g} and (—V,) U {0, g} are connected. Assume then that V, # @. Since G
is connected, V> is not empty. V; is invariant under the translation by g, and so
too is 8V,. Since 8V, C {0, g} and since any non-empty subset of {0, g} invariant
under the translation by g coincides with {0, g}, it follows that 8V, is all of {0, g}.
Repeating the argument employed in the proof of the connectedness of V; U {0, g},
we conclude that V> U {0, g} is connected. Now (—V,) U {0, g} is connected too for
it is the inverse of V, U {0, g}.

At this stage, we are in position to show that V; U{0, g} is an arc with endpoints
0 and g. Note first that, since G is compact and G is countable, G is metrisable
(cf. [2, Thm. 24.15]). In particular, Vi U {0, g} is a metrisable continuum. By
a theorem of Moore [4] (see also [3, §47, Sec. V, Thm. 1]), if every point in a
metrisable continuum with the exception of two points a and b has a disconnected
complement, then the continuum is an arc with endpoints a and b. Thus to prove
that V; U {0, g} is an arc with endpoints O and g, it suffices to show that, for each
a €V, (ViU{0,g})\ {a} is disconnected. Suppose that (V; U {0,g}) \ {a}
is connected for some a € V,. Noting that (V; U {0,g}) \ {a} coincides with
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(Vi \ {a}) U {0, g} and that the translate of (V; \ {a}) U {0, g} by g coincides with
((=Vi)\ {a+g}) U {0,g}, we see that ((—V1) \ {a+ g}) U {0, g} is connected.
Now both (V) \ {a}) U {0,g} and ((—V1) \ {a + g}) U {0, g} are connected and
contain O and g, so their union C is connected. If V, is empty, then, as is easily
seen, C coincides with G\ {a,a + g}, and in particular G\ {a,a + g} is connected.
If V, is not empty, then both V, U {0, g} and (—V2) U {0, g} are connected and
contain O and g, and so (Vo U {0,g}) U ((—=V2) U{0,g}) U C is connected. It is
straightforwardly verified that the latter set coincides with G \ {a,a + g}. Thus,
independently of whether or not V, is empty, G \ {a,a + g} is connected. But
G\ {a,a + g} is disconnected, since it is the translate by a of the disconnected set
G\ {0,g} (= G\ G(3)). This contradiction proves that V; U {0, g} is an arc with
endpoints 0 and g.

Now that V, is an open subset of G homeomorphic with the real line R, G is
locally connected. According to a theorem of Pontryagin [5, Thm. 42}, any compact,
metrisable, connected and locally connected group is the direct product of a finite or
countable number of subgroups, each isomorphic with T. Applying this theorem and
taking into account that G contains an open subset homeomorphic with R (namely
V), we find that G is topologically isomorphic with T.

O
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