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SOME FUNCTIONAL EQUATIONS RELATED TO
QUADRATIC FUNCTIONS

Gy. Szabd, Debrecen, Hungary

Abstract. It is introduced the functional equation F(x + u) + F(x — u) =
= F(x + v) + F(x — v)for any x, 4, v€ L, ||u}| =liv]]| = 1, where L is a real inner
product space of dim L > 2. Our main result states that its only »regular« solution is
essentially the norm square function | -}}2.

Introduction

In this paper (L, ||.]) denotes a real linear normed space with
dim L > 2 and (#/, +) an abelian group such that for any ae.o/

there exists a unique b € &/ (denoted by —;: a) with b + b = a.
Consider the functional equation
Fx+uw+Fx—w=Fx+v)+F{x—uv), x,u,vel, (1)

lu] =lof =1

where F : L -» &/ is the unknown function. This equation has appeared
in the following statement (see [7]): If a continuous function F : R>-> R
has the same integral on every semidisk of the unit radius, then it
satisfies (1).

We also deal with the slighily modified equation

Flx+uw+Fx—w=F@x+v)+Fx—0v), x,u,vel, (2)
lu| =[o[; F(0) =0,

and show that if the norm on L is derived from an inner product
{.,.>:LxL-R, then (2) is equivalent to the more familiar equation

Fx+y»)=Fx+F(y), xyel, {x,y)=0. 3)

Nonnegative or continuous solutions of (3) have been known before
(sec e. g. [8], [3)), but we are informed that J. Ritz has recently found
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the general solution, discussing the equation (3) on a so called »ortho-
gonality space« (see [6]). The solutions of (3) are called orthogonally
additive functions.

In Section 1 we investigate the connection between the equations
(1), (2) and (3) on inner product spaces obtaining the one point
continuous solutions of (1).

The case of spaces without an inner product is studied in Section 2.
We also obtain the general solution of (2) without using results of [6],
but with the help of the well known norm square equation (see [2])

Fx+y)+Fx—y)=2Fx+2F(@»), xyel C))

We conclude that there are generally no other than additive solutions
of the above equations (1)—(3) on such a space.

1. The case of inner product spaces

In this Section we assume that (L oy ) is an inner product

space with dim L >2 and the norm ||| = l/( ,... The general solu-
tion of (3) is given by

1.1. THEOREM ([6]). The function F :L — .=/ 1s orthogonally
additive if and only if there exist additive mappings a :R—>."/, A:L-—> </
such that

F(x)=a(]x]?) + A(x), xeL. (1.1

1.2. COROLLARY. Eguations (2) and (3) are mutually equivalent.

Proof. The implication (3) = (2) can be verified by a simple
computation according to Theorem 1.1. The converse implication can

be proved as follows. Let x,y €L, {x,y> =0. Then 1‘ - (x + i =

= H_ (x — )| from which it follows
1 , 1 : ! . 1
Fx+3y)=F —Z—[x—r—y]'l'?[x"r‘y] +F _2_[x—;~y]——2—[x+

+31) = F (5 b+ 51+ g lr—31) 4 F (Tlesl = 21— 1) =

=F(x)+ F(y).
1.3. COROLLARY. The equation (3) implies the equation (1).

Now, we restrict ourselves to the solutions of (1).
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1.4. LEMMA. For any A€ R there is a dense additive subgroup
D, © R such that zf F is a solution of (1) with F(0) = 0, then for all
w,sel, loj =z =1, {w2)=0,

F (/'.zu 4+ pz) = F (Aw) + F (u2), p € Dy,
holds true.

Proof. Consider the additive subgroup D, generated by the set
P, = {2p% =2}/1 — A%/4k? |ke N, k > |A|/2}.

Since lim (p%*" — pP) = 0, the subgroup D, is dense in R.
k—r o

Now let F be a solution of (1) with F(0) =0 and w, z ¢ L, | =
= Erz:»r = 1, {w, 2> = 0. Define the functions ;4 and ,4A¥ (k= N, k >
> 72, ]41 2,..,k) on R by
A (W) = F (Qw + uz) — F (uz),
(1.2)

AP (u) =F (% A + ,uz) — F(]—;—l— Aw +- ﬂz), HER.

E

Obviously ,4 = > ,4% for all k. Now we show that the functions
j=1

;4§ are periodic with the period 2p{ = ZVI —A2[4k?. Substituting

into (1) the vectors

(2] Jw + [‘u _l_pm] z), ( Jaw + P(k) ), ( }.w—p”" .,)

for x, u, v respectively, we get the desired result

AP (u + 208°) = (—— 2w + [ + 2p] z) —F ( 5 AT

4+ [u + 2p8] z) =F (% rw -+ ,u,z) — F (i—;——l Aw —+ ,uz) = AP (u).

Thus ;4 is periodic with the period 2p{ for all &, and hence any
U € D,, is a period of ;4. This means that
AW =,40) = F(lw) — F(0) = F(w), ueD,

Equating this with (1.2) completes the proof.

L.5. LEMMA. If F is a solution of (1), then for any y,w,z €L,
loof =2l = 1, <w, 2> = 0, i¢ holds
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F(w+pz+y) = Fw +y) + F(uz +3) — F(3), pe Dy (1.3)
Proof. Define the function G, : L - < by

G,(x)=F(x+y —F(y), xeLlL.

A simple computation shows that G, is a solution of (1) with G, (0) =
= 0. Thus by Lemma 1.4, for every w, z€ L, |w] =|2] =1, {w, 2) =
= 0 it follows that

G, U + uz) = G, (h) + G, (us), u € D;.

Hence, according to the definition of G, the lemma is proved.

1.6. THEOREM. Let of be equipped with a Hausdorff topology
for which the operations a + b, — a, —;—a are continuous. If a solution
F of (1) is continuous at O with F (0) = 0, then F is orthogonally additrve.

Proof. Let a solution F of (1) be continuous at 0 with F(0) =0
and let x,yeL, <x,y>=0. Set x| =4, |y] =p 2 'x=w,
u~ty =z Choose a sequence A, € D,, A, > . and then another
sequence i, € Dy 2, fn > p. Set y,=[A—2]w and vy, = [p —
— wa] 2. Then by the previous lemma

F(w + pz) = F(Qyw + pz +3,) =
=F(Ayw +y,) + F(uz + y,) — F(y,) =
=F(Qw) + F(A— 2w+ pnz +5;) — F(yy) =
= FQw) + F([2 —Alw-+y) +Fpnz +y) —F () —F(y) =
= F(Jw) + F (uz) + F (v, + ) — F(y) — F ()

Letting n > oo, the continuity at 0 completes the proof.

1.7. COROLLARY. If the solution F of (1) is continuous at 0,
then it has the form

Fx)=c(|x|)+Cx) +b =xcL (1.4

wlze;e/ ¢c:R—-> &/, C:L > & are continuous additive mappings and
bed.

Proof. By Theorems 1.6 and 1.1, the function F — F (0) can be
written in the form (1.1). It is clear that @ and A are continuous fun-
ctions at 0. Because of their additivity, they are continuous everywhere,

so if we denote them by ¢ and C respectively, the statement is obtained
with b = F(0).
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1.8. THEOREM (Main result). Let &/ = R, then the function
F = -||? is the only solution of (1) which is continuous at O with F(0) =0
and F(u) =1 for all ue L, |u] = 1.

Proof. By Corollary 1.7, for every u € L, |u] = 1 we have
Cu) = —;— (F@) — F(—u) =0.

Thus C is equal to zero by its linearity. Furthermore b =F (0)=0
and c¢ is a continuous solution of the Cauchy equation, and so it has
the form ¢ (4) = ¢ (1) + . Here ¢ (1) = c(Ju}?) = F (u) =1 (see [6)).

1.9. Remark. In each of the statements proved above, the con-
tinuity at 0 can be replaced by the continuity at any point of L, and
it implies the continuity on the whole L. Indeed, if the solution F
of (1) is continuous at y € L, then the function G, defined in the proof
of Lemma 1.5 is of the form (1.4). Thus G, is continuous on the whole
L, and so is F.

2. The case of normed linear spaces

In what follows we consider the equations (1)—(3) on a real
normed linear space (L, | -]), dim L > 2. For (3) to make a sense on
such a space, it is necessary to define an »orthogonality relation« in L
which turns it into an orthogonality space. Because of the lack of such
a natural concept, several ones have been introduced (see e. g. [4],
[97). In [8] the following concept of orthogonality is considered:
The elements x and y of L are said to be orthogonal (shortly x 1 ),
if |«] <fx + Ay] for all e R.

Anyway, the additive functions will solve (3) as well as (1) and
(2). However, nontrivial continuous even solutions do not exist in
general. Namely, we can quote here the result obtained by K. Sun-
daresan.

2.1. THEOREM ([81). A nontrivial even continuous orthogonally
(L) additive real valued function on L can exist only if L is an inner
product space.

2.2. Remark. In 1980 J. Rétz found the following unpublished
result, which generalizes Theorem 2.1 in a certain sense: If L = R?¥®
and the norm on L is such that the unit ball is a polygon, then any
even orthogonally ( 1) additive mapping from L into an abelian group
7 is identically zero.

Concerning the equation (1), we can only state that the continuous
even solutions found in Corollary 1.7 do not satisfy it on spaces without
inner product. Also we can show an example of a normed linear space
for which the assertion of Theorem 2.1 holds. We shall make use

*) Since then it has appeared: J. Ritz, On orthogonally additive mappings II, Proc. of 19th
International Symp. on Functional Equations, Nantes, (1981), 39,
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of the following characterization of inner product spaces and the ge-
neral solution of a version of the norm square equation (4).

2.3. LEMMA ([51). The normed linear space L is an inner product
space with the same norm if and only if there is a fixed constanty # 0, + 1
such that if %y < L and || = || then [yx + 3] =x + 7y

2.4, LEMMA. A function F : L — o7 satisfies the equation
Fx+y) +Flx—y)=2F@x+F()+F(—y), xyel (2.1)

if and only if there exist a biadditive (additive in both variables separately)
B:L X L—> </ and an additive mapping A : L — o/ such that

F(x)=B(xx) +A@®), xel. (2.2)

Proof. Denoting by F, and F, the even and odd parts of F res-
pectively, we have from (2.1)

Fe(x+y) + F,(x+3 +F.(x—y) + F,(x —y) =
=2F,(x) +2F,(x) + 2F.(y)
Fo(x+5) = Fo(x +3) + Fo(x —3) — F (x —y) =2F.(x) — 2F, (x) +
+2F,(y).

Summing up these equations, we obtain the equation (4) in F,, there-
fore it has the required form B (.,.) (see [2]). Now subtracting them
we have

Fo(x +y) + Fo(x —y) =2 F, (x).
It gives that 2 F, (x) = F,(2x) by taking x =y. Then choosing
w, 2 € L arbitrarily and x = %(w +2), y= —;— (2 — 2), the additivity
of F, is proved.

2.5. THEOREM. If the function c (| - |?) is a solution of (1) on
L, where ¢ : R - o/ 1s a non-zero continuous additive mapping, then
L is an inner product space.

Proof. First we show that ¢ is a one-to-one mapping. If it would
not be so, then there were real numbers »; # ¥, such that ¢ (¥,) =
= ¢ (v). Thus with v = », — v, we have c(¥) =0, and by the
additivity, ¢ is periodic with the period » # 0. Since ¢ (¥/2) + ¢ (¥/2) =
= ¢ (v) = 0 and the decomposition 0 + 0 = 0 in &/ is unique, we
obtain ¢ (¥/2) =0 and »/2 is also a period of ¢. By induction we see
that the numbers v/2%, &2 € N, are all periods of ¢. Since lim #/2* = 0,

k—+ oo

¢ is constant on a dense subset of R, and by the continuity, ¢ is identi-
cally zero on R, which is a contradiction.
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Now let x,y e L, x| =]y
Then the equation (1) for ¢(

[=2#0andu=4A"1x0=4"1y
[ at (u + v), u, v gives the equahty

¢(2u + 2% + ¢ (o] = ¢ (Ju + 22 ?) + c (Ju?).

Since ¢ is one-to-one, it follows |[2u + v = |u + 2v|. Consequently
the sufficient condition of Lemma 2.3 holds with y =2

2.6. THEOREM. Let L = R* with the norm [(4, w)] = |A] +
+ |u|. Then the equation (1) has only trivial continuous even solutions
with values in R.

Proof. First, in a similar way as in the proof of Lemma 1.4, we
show that for every continuous solution F of (1) with F(0,0) =0
(this may be supposed) it holds

F@O,uw=F@20+FQOu), AueR? (2.3)

(Obviously this does not mean the orthogonal additivity in any sense).
Define the functions ;4 and ;4{° on R by

AW =F@Qpu) —F0O,p), peR
A9 @ = F (S 2,0) ~ £ (25 20),

(keN, k> |A]/2, = 1,2, ..., k). Evidently for all 2 ;4 = Z AP,

(2.4)

Now we show that the functions AP, j=1,2,...,4, are perxodlc
with the period 2pP =21 — ]l]/Zk) Setting

2j — 1
x:( Z U +p(k)), (2k ;UPEI"))’ ( ¥R _P(k))

into (1), we get
(k)) —
o —

AP (u + 2pF —F(%l,,u-{—ZPS_"’)—F(JgI

. -
—F (% A ,u) - F(Z_k__ 2 u) — A% ().

Hence ;4 is periodic with the period 2p$ and also with 2 (pf¢+ 1 —
— p¥) for all k. Since lim (pf+1 — p¥) =0, ,4 is constant on

k—co
a dense subgroup of R, and because if its continuity, it is constant
on R:

AW =:40)=F(@,0 —F(@©0,0)=F(4,0), ueR
This and (2.4) together imply (2.3).
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Let the functions f and g be defined by
f()') = F(}“’ 0)2 g(.u) == F(O, ,u): Ay 12 €R.

If F is even, then so are f and g. These functions satisfy the well-known
quadratic equation (4), i. e. for f

FA+H+fA-8=2f(D)+2(), LEcR (2.5)

If |&] < 1, then (2.5) is a direct consequence of (1) and (2.3). Indeed,
for = 1 — |&]| we have

20/ +egml=F¢&n +F(=&—n=F0O1)+F0O, —1)=
=2e()=2[fD+eM]-2fD=FALDH+F@A —1) —2f(A) =
=FA+&nN+FA—§&—n—2f)=
=[fA+O+egMI+fA—-8+g]— 2.

Now suppose that (2.5) holds for [§] <neN. Let n<é<n-1.
Then by (1), (2.3) and our assumption

FO+H+fA-H-2N=12fA+E-D+2 D —fA+

+E-DNHHA-E+D+2M)-fA-E+2]-2f(D) =

=4[fD+fE-DI-2[fQA+fE—-D]+4) -2 =
=4 (6 —1) —2f(§ —2) +4g(D).

It is seen that f (A + &) + f (4 — & — 2f(A) does not depend on
2, thus choosing A = 0, we obtain (2.5) for || < + 1. This proves
(2.5) by induction.

By Lemma 2.4, it is clear that the continuous solutions f and g
of (2.5) are of the form

JFA)y=c 22 g(u) =c"p? AueR
Since F satisfies (1), we have
d=f)=F{1,00=F(0,1)=g(1) =¢".

Finally from (1) with ¢ = ¢" = ¢"
1 1 1 1 1
=t +5@=7(5) +o(g) = e+ yo=re

which gives ¢ = 0. This completes the proof.

2.7. Remark. 1t is not difficult to see that the assertion of Theorem
2.6 holds for functions continuous only at a single point.
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In the rest of the paper we reduce the problem of equation (2)
to the norm square equation.

2.8. THEOREM. The equation (2) implies the modified norm
square equation (2.1).

Proof. Let F : L - </ be a solution of (2), and x,ye L, ||| <
< [[x[l. Consider the connected sphere

={zeL||z] =y}
and define the function D:Z, - R by
D@E=|x+sz] —|x—2z], zeZ,

”ylx
For =z, R[[x“ x and 2, = — 2, we have z,, 3, gZ,., and
OO P T P g

D(Zz) :D(""Zl) = ~D(2’1) <0.
Since D is continuous, there is an element 24 € Z, such that D (z,) = 0.
Let u= —;—(x + 20), v = %(x —2o). It is clear that |u| =||2], so

the equation (2) at u, 4, v and v, v, u# is of the form

F(x + 20) + F(0) = F (x) + F(20)
and

F(x — 2o) + F(0) = F(x) + F (— 20),

respectively. Finally from these equations we get the desired result
by using (2) with |y] — |20

F(x+y) +F(x—y =F+2)+ Flx—2)=
= F(x) + F(20) + F (x) + F(— 20) = 2F (x) + F(y) + F(~ ).

2.9. COROLLARY. If L is an inner product space, then a function
F is a solution of the equation (2) if and only if there exist additive map-
pings a:R - & and A : L — & such that

F(x) =a(|x|?) + A4(x), xeL. (2.6)

Proof. By Theorem 2.8 and Lemma 2.4, F can be written in the
form (2.2). Obviously

Brx) =5 (F() + F(= ) xel,
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thus B (x,x) = B(y,y) if x,y€eL, [x] =ly]|. Now let a:R—> =/
be defined by

a@) =sgn () BYAu V& uw, AcR

where u € L is arbitrary with [u] = 1. It follows that for any x € L
B (x,x) = a(|x]|?). To show the additivity of a let A, 4 € R, and
x,y € L with [x]2 =2, | yll =, {5y = O Then by the equation

(2) for a(ll-|*) with u=—- (x' y), v = —(x — y) at u,u,v we have

a(d+p)=a(fx+y|?) =a(i«?) +a(y]?) =a@) + a(w).

2.10. THEOREM. If L is not an inner product space, then the
solutions of the equation (2) are exactly the additive functions A : L — 7.

Proof. By Lemma 2.4 and Theorem 2.8, any solution F of (2)
has the form (2.2). We show that B is identically zero. Notice that by
(2) for the even part F, of F

B(u,u)zFe(u):—;—(Fe(0+u)+Fe(0—u))=

— RO+t R O—)=F.()=B@mo @7

2
for all w,we L, [u] =|of.

Further, by Lemma 2.3, there are elements «’, v" € L such that
lwl =] and [[2¢' + o] <|u' + 2¢'|. Consider the connected
sphere

/||

={uel|ju] =|u|}
and define the continuous function ¢: U - R by

[2u + o'

m ueU.

q(u) =

Clearly ¢ ()= 1 > ¢ (&'), thus there is an element uoe U such
that &// = q (up) < 1 is rational. Setting vo == 2', x = 2uy + v, ¥ =
=1y + 2w, for any we L, 7 = ||lw]//x] we have lw] = [[Ax]| and
so by (2.7) F, (w) = F, (lx) Further the equation (2) at the points
2 (g + vo), luo, Avg gives

F, (ix) + F (Avo) = F, (4 [uo + o] + Auo) + F, (Avo) =
= F (A [uo + vo] + Avo) + F, (Auo) = F, (2y) + F, (Juo).
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Hence we have F,(w)= F,(Ax) = F, (Ay) regarding the equality
|Auo|| = ||2v,] and (2.7). Then according to |lAx{ = [kAy], (2.7) and
the biadditivity of B imply that

I1?F,(w) =1*F, (Ax) =12 B (Ax, Ax) = B (Iix, lix) =
= B (kly, R2y) = k> B(Jy, .y) = k2 F, (Jy) = k* F, (w).

Thus for any we L (1> — k*) F, (w) = 0 holds, and regarding the
inequalities g (uo) <kl < ({ — Dl </l + 1)< 1 = g (vy) we obtain
the following particular equalities

@ — DFE,(w) =0, 2+ 1)F,(w)=0.

Finally substracting them we have 2 F, (w) = 0 and so F, (w) == 0
for any w € L because of the uniqueness of the 2-division in .7,

2.11. COROLLARY. A4 real normed linear space L is an inner
product space with the same norm if and only if the equation (2) allows
a nonadditive solution on L.

2.12. Remark. The problem whether the equation (1) has a so-
lution of the form (2.2) different from (1.1) on an inner product space
L, is open. However, we notice that for a function F derived from a
biadditive mapping B : L X L - &/ to be a solution of (1), it is ne-
cessary and sufficient that B(u, ©) = constant holds for ueL, |u] = 1.
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NEKE FUNKCIONALNE JEDNADZBE KOJE SE ODNOSE NA
KVADRATNE FUNKCIJE

Gy. Szabd, Debrecen, MadZarska

Sadrzaj

U radu je uvedena funkcionalna jednadzba F(x +u) + F (x — u) =
=F(x+ )+ F(x — ), x, u, ve L, |u] =]v] = 1, gdje je L realan
prostor sa skalarnim produktom i dim L >{2. Glavni rezultat kaZe da
je njeno jedino »regularno« rjedenje u biti kvadrat norme tj. ]2



