VORONOVSKAJA-TYPE THEOREM FOR CERTAIN GBS OPERATORS

Ovidiu T. Pop
National College "Mihai Eminescu" of Satu Mare, Romania

Abstract. In this paper we will demonstrate a Voronovskaja-type theorem and approximation theorem for GBS operator associated to a linear positive operator.

1. Introduction

In this section, we recall some notions and results which we will use in this article.

Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $m \in \mathbb{N}$, let $B_{m}: C([0,1]) \rightarrow C([0,1])$ the Bernstein operators, defined for any function $f \in C([0,1])$ by

$$
\begin{equation*}
\left(B_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k}{m}\right) \tag{1.1}
\end{equation*}
$$

where $p_{m, k}(x)$ are the fundamental polynomials of Bernstein, defined as follows

$$
\begin{equation*}
p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{1.2}
\end{equation*}
$$

for any $x \in[0,1]$ and any $k \in\{0,1, \ldots, m\}$ (see $[7,28]$).
In 1932, E. Voronovskaja in the paper [31], proved the result contained in the following theorem.

2000 Mathematics Subject Classification. 41A10, 41A25, 41A35, 41A36.
Key words and phrases. Linear positive operators, GBS operators, the first order modulus of smoothness, Voronovskaja-type theorem, approximation theorem.

Theorem 1.1. Let $f \in C([0,1])$ be a two times derivable function in the point $x \in[0,1]$. Then the equality

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m\left[\left(B_{m} f\right)(x)-f(x)\right]=\frac{x(1-x)}{2} f^{\prime \prime}(x) \tag{1.3}
\end{equation*}
$$

holds.
Let $p \in \mathbb{N}_{0}$. For $m \in \mathbb{N}$, F. Schurer (see [26]) introduced and studied in 1962 the operators $\widetilde{B}_{m, p}: C([0,1+p]) \rightarrow C([0,1])$, named Bernstein-Schurer operators, defined for any function $f \in C([0,1+p])$ by

$$
\begin{equation*}
\left(\widetilde{B}_{m, p} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f\left(\frac{k}{m}\right) \tag{1.4}
\end{equation*}
$$

where $\widetilde{p}_{m, k}(x)$ denotes the fundamental Bernstein-Schurer polynomials, defined as follows

$$
\begin{equation*}
\tilde{p}_{m, k}(x)=\binom{m+p}{k} x^{k}(1-x)^{m+p-k}=p_{m+p, k}(x) \tag{1.5}
\end{equation*}
$$

for any $x \in[0,1]$ and any $k \in\{0,1, \ldots, m+p\}$.
For $m \in \mathbb{N}$, let the operators $M_{n}: L_{1}([0,1]) \rightarrow C([0,1])$ defined for any function $f \in L_{1}([0,1])$ by

$$
\begin{equation*}
\left(M_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{0}^{1} p_{m, k}(t) f(t) d t \tag{1.6}
\end{equation*}
$$

for any $x \in[0,1]$.
These operators were introduced in 1967 by J. L. Durrmeyer in [11] and were studied in 1981 by M. M. Derriennic in [9].

For $m \in \mathbb{N}$, let the operators $K_{m}: L_{1}([0,1]) \rightarrow C([0,1])$ defined for any function $f \in L_{1}([0,1])$ by

$$
\begin{equation*}
\left(K_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) d t \tag{1.7}
\end{equation*}
$$

for any $x \in[0,1]$.
The operators $K_{m}, m \in \mathbb{N}$, are named Kantorovich operators, introduced and studied in 1930 by L. V. Kantorovich (see [14]).

For the following construction see [18].
Define the natural number m_{0} by

$$
m_{0}= \begin{cases}\max \{1,-[\beta]\}, & \text { if } \beta \in \mathbb{R} \backslash \mathbb{Z} \tag{1.8}\\ \max \{1,1-\beta\}, & \text { if } \beta \in \mathbb{Z}\end{cases}
$$

For the real number β, we have that

$$
\begin{equation*}
m+\beta \geq \gamma_{\beta} \tag{1.9}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$, where

$$
\gamma_{\beta}=m_{0}+\beta= \begin{cases}\max \{1+\beta,\{\beta\}\}, & \text { if } \beta \in \mathbb{R} \backslash \mathbb{Z} \tag{1.10}\\ \max \{1+\beta, 1\}, & \text { if } \beta \in \mathbb{Z}\end{cases}
$$

For the real numbers $\alpha, \beta, \alpha \geq 0$, we note

$$
\mu^{(\alpha, \beta)}=\left\{\begin{array}{lll}
1, & \text { if } & \alpha \leq \beta \tag{1.11}\\
1+\frac{\alpha-\beta}{\gamma_{\beta}}, & \text { if } & \alpha>\beta
\end{array}\right.
$$

For the real numbers α and $\beta, \alpha \geq 0$, we have that $1 \leq \mu^{(\alpha, \beta)}$ and

$$
\begin{equation*}
0 \leq \frac{k+\alpha}{m+\beta} \leq \mu^{(\alpha, \beta)} \tag{1.12}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$ and for any $k \in\{0,1, \ldots, m\}$.
For the real numbers α and $\beta, \alpha \geq 0, m_{0}$ and $\mu^{(\alpha, \beta)}$ defined by (1.8)(1.11), let the operators $P_{m}^{(\alpha, \beta)}: C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right) \rightarrow C([0,1])$, defined for any function $f \in C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right)$ by

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.13}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$ and for any $x \in[0,1]$.
These operators are named Stancu operators, introduced and studied in 1969 by D. D. Stancu in the paper [27]. In [27], the domain of definition of the Stancu operators is $C([0,1])$ and the numbers α and β verify the condition $0 \leq \alpha \leq \beta$.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [6] a sequence of linear positive operators $\left(L_{m}\right)_{m \geq 1}, L_{m}: C_{B}([0, \infty)) \rightarrow C_{B}([0, \infty))$, defined for any function $f \in C_{B}([0, \infty))$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\frac{1}{(1+x)^{m}} \sum_{k=0}^{m}\binom{m}{k} x^{k} f\left(\frac{k}{m+1-k}\right) \tag{1.14}
\end{equation*}
$$

for any $x \in[0, \infty)$ and any $m \in \mathbb{N}$, where $C_{B}([0, \infty))=\{f \mid f:[0, \infty) \rightarrow \mathbb{R}, f$ bounded and continuous on $[0, \infty)\}$.

For $m \in \mathbb{N}$ consider the operators $S_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(S_{m} f\right)(x)=e^{-m x} \sum_{k=0}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{k}{m}\right) \tag{1.15}
\end{equation*}
$$

for any $x \in[0, \infty)$, where $C_{2}([0, \infty))=\left\{f \in C([0, \infty)): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}}\right.$ exists and is finite $\}$.

The operators $\left(S_{m}\right)_{m>1}$ are named Mirakjan-Favard-Szász operators and were introduced in 1941 by G. M. Mirakjan in [16].

They were intensively studied by J. Favard in 1944 in [12] and O. Szász in 1950 in [29].

Let for $m \in \mathbb{N}$ the operators $V_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ be defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(V_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{k}{m}\right) \tag{1.16}
\end{equation*}
$$

for any $x \in[0, \infty)$.
The operators $\left(V_{m}\right)_{m \geq 1}$ are named Baskakov operators and they were introduced in 1957 by V. Ā. Baskakov in [4].
W. Meyer-König and K. Zeller have introduced in [15] a sequence of linear and positive operators. After a slight adjustment given by E. W. Cheney and A. Sharma in [8], these operators take the form $Z_{m}: B([0,1)) \rightarrow C([0,1))$, defined for any function $f \in B([0,1))$ by

$$
\begin{equation*}
\left(Z_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k}{m+k}\right) \tag{1.17}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and for any $x \in[0,1)$.
These operators are named the Meyer-König and Zeller operators.
Observe that $Z_{m}: C([0,1]) \rightarrow C([0,1]), m \in \mathbb{N}$.
In the paper [13], M. Ismail and C. P. May consider the operators $\left(R_{m}\right)_{m \geq 1}$.

For $m \in \mathbb{N}, R_{m}: C([0, \infty)) \rightarrow C([0, \infty))$ is defined for any function $f \in C([0, \infty))$ by

$$
\begin{equation*}
\left(R_{m} f\right)(x)=e^{-\frac{m x}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{k x}{1+x}} f\left(\frac{k}{m}\right) \tag{1.18}
\end{equation*}
$$

for any $x \in[0, \infty)$.
We consider $I \subset \mathbb{R}, I$ an interval and we shall use the following functions sets: $E(I), F(I)$ which are subsets of the set of real functions defined on I, $B(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ bounded on $I\}, C(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ continuous on $I\}$ and $C_{B}(I)=B(I) \cap C(I)$.

If $f \in B(I)$, then the first order modulus of smoothness of f is the function $\omega(f ; \cdot):[0, \infty) \rightarrow \mathbb{R}$ defined for any $\delta \geq 0$ by

$$
\begin{equation*}
\omega(f ; \delta)=\sup \left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|: x^{\prime}, x^{\prime \prime} \in I,\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta\right\} \tag{1.19}
\end{equation*}
$$

Let $I, J \subset \mathbb{R}$ intervals, $E(I \times J), F(I \times J)$ which are subsets of the set of real functions defined on $I \times J$ and $L: E(I \times J) \rightarrow F(I \times J)$ be a linear positive operator.

The operator $U L: E(I \times J) \rightarrow F(I \times J)$ defined for any function $f \in E(I \times J)$, any $(x, y) \in I \times J$ by

$$
\begin{equation*}
(U L f)(x, y)=(L(f(x, *)+f(\cdot, y)-f(\cdot, *))(x, y) \tag{1.20}
\end{equation*}
$$

is called GBS operator ("Generalized Boolean Sum" operator) associated to the operator L, where "." and "*" stand for the first and second variable (see [3]).

If $f \in E(I \times J)$ and $(x, y) \in I \times J$, let the functions $f_{x}=f(x, *), f^{y}=$ $f(\cdot, y): I \times J \rightarrow \mathbb{R}, f_{x}(s, t)=f(x, t), f^{y}(s, t)=f(s, y)$ for any $(s, t) \in I \times J$. Then, we can consider that f_{x}, f^{y} are functions of real variable, $f_{x}: J \rightarrow \mathbb{R}$, $f_{x}(t)=f(x, t)$ for any $t \in J$ and $f^{y}: I \rightarrow \mathbb{R}, f^{y}(s)=f(s, y)$ for any $s \in I$.

2. Preliminaries

For the following construction and result see [19] and [21], where $p_{m}=m$ for any $m \in \mathbb{N}$ or $p_{m}=\infty$ for any $m \in \mathbb{N}$.

Let I, J be intervals with $I \cap J \neq \emptyset$. For any $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ consider the functions $\varphi_{m, k}: J \rightarrow \mathbb{R}$ with the property that $\varphi_{m, k}(x) \geq 0$ for any $x \in J$ and the linear positive functionals $A_{m, k}: E(I) \rightarrow \mathbb{R}$.

Definition 2.1. For $m \in \mathbb{N}$ define the operator $L_{m}: E(I) \rightarrow F(J)$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) A_{m, k}(f) \tag{2.1}
\end{equation*}
$$

for any $f \in E(I)$ and $x \in J$.
Proposition 2.2. The $L_{m}, m \in \mathbb{N}$ operators are linear and positive on $E(I \cap J)$.

Definition 2.3. For $m \in \mathbb{N}$, let $L_{m}: E(I) \rightarrow F(J)$ be an operator defined in (2.1). For $i \in \mathbb{N}_{0}$, define $T_{m, i}^{*}$ by

$$
\begin{equation*}
\left(T_{m, i}^{*} L_{m}\right)(x)=m^{i}\left(L_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{i}\right) \tag{2.2}
\end{equation*}
$$

for any $x \in I \cap J$, where for $x \in I, \psi_{x}: I \rightarrow \mathbb{R}, \psi_{x}(t)=t-x$ for any $t \in I$.
In what follows $s \in \mathbb{N}_{0}$ is even and we suppose that the operators $\left(L_{m}\right)_{m \geq 1}$ verify the conditions: there exists, the smallest $\alpha_{s}, \alpha_{s+2} \in[0, \infty)$ so that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left(T_{m, j}^{*} L_{m}\right)(x)}{m^{\alpha j}}=B_{j}(x) \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

$x \in I \cap J, j \in\{s, s+2\}$ and

$$
\begin{equation*}
\alpha_{s+2}<\alpha_{s}+2 \tag{2.4}
\end{equation*}
$$

Theorem 2.4. Let $f: I \rightarrow \mathbb{R}$ be a function.
If $x \in I \cap J$ and f is a s times differentiable function in x with $f^{(s)}$ continuous in x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right]=0 \tag{2.5}
\end{equation*}
$$

Assume that f is s times differentiable function on I, with $f^{(s)}$ continuous on I and there exists an interval $K \subset I \cap J$ such that there exist $m(s) \in \mathbb{N}$ and $k_{j} \in \mathbb{R}$ depending on K, so that for any $m \geq m(s)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, j}^{*} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j} \tag{2.6}
\end{equation*}
$$

where $j \in\{s, s+2\}$. Then the convergence given in (2.5) is uniform on K and

$$
\begin{align*}
& m^{s-\alpha_{s}}\left|\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right| \tag{2.7}\\
& \leq \frac{1}{s!}\left(k_{s}+k_{s+2}\right) \omega\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right)
\end{align*}
$$

for any $x \in K$ and $m \geq m(s)$.
In the following we consider that

$$
\begin{equation*}
\left(T_{m, 0}^{*} L_{m}\right)(x)=1 \tag{2.8}
\end{equation*}
$$

for any $x \in I \cap J$ and any $m \in \mathbb{N}$.
Corollary 2.5. Let $f: I \rightarrow \mathbb{R}$ be a function. Assume that f is s times differentiable in $x \in I \cap J$ and $f^{(s)}$ is continuous in x. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} f\right)(x)=f(x) \tag{2.9}
\end{equation*}
$$

if $s=0$ and
(2.10) $\lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s-1} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i}^{*} L_{m}\right)(x)\right]=\frac{f^{(s)}(x)}{s!} B_{s}(x)$ if $s \geq 2$.

If f is s times differentiable function on $I \cap J$, with $f^{(s)}$ continuous on $I \cap J$ and (2.6) takes place for an interval $K \subset I \cap J$ then the convergence from (2.9) and (2.10) is uniform on K.

From (2.3) and (2.8) it results that

$$
\begin{equation*}
\alpha_{0}=0 \tag{2.11}
\end{equation*}
$$

and then

$$
\begin{equation*}
k_{0}=1 \tag{2.12}
\end{equation*}
$$

Corollary 2.6. Let $f: I \rightarrow \mathbb{R}$ be a function.
If $x \in I \cap J$ and f is continuous in x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} f\right)(x)=f(x) \tag{2.13}
\end{equation*}
$$

Assume that f is continuous on I and there exists an interval $K \subset I \cap J$ such that there exists $m(0) \in \mathbb{N}$ and $k_{2} \in \mathbb{R}$ depending on K, so that for any $m \geq m(0)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, 2}^{*} L_{m}\right)(x)}{m^{\alpha_{2}}} \leq k_{2} \tag{2.14}
\end{equation*}
$$

Then the convergence given in (2.13) is uniform on K and

$$
\begin{equation*}
\left|\left(L_{m} f\right)(x)-f(x)\right| \leq\left(1+k_{2}\right) \omega\left(f ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right) \tag{2.15}
\end{equation*}
$$

for any $x \in K$ and $m \in \mathbb{N}, m \geq m(0)$.
Proof. It results from Theorem 2.4.
For $m \in \mathbb{N}$, let the linear positive functionals $A_{m, k}^{*}: E(I \times I) \rightarrow \mathbb{R}$ with the property: if $(x, y) \in I \times I$, then

$$
\begin{align*}
& A_{m, k}^{*}(f)=A_{m, k}(F) \tag{2.16}\\
& A_{m, k}^{*}\left(f_{x}\right)=A_{m, k}\left(f_{x}\right) \tag{2.17}
\end{align*}
$$

and

$$
\begin{equation*}
A_{m, k}^{*}\left(f^{y}\right)=A_{m, k}\left(f^{y}\right) \tag{2.18}
\end{equation*}
$$

for any $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$, any $f \in E(I \times I)$, where we note $F: I \rightarrow \mathbb{R}$, $F(t)=f(t, t)$ for any $t \in I$.

Now, with the help of $\left(L_{m}\right)_{m \geq 1}$ operators, we construct a sequence of bivariate operators. In the following let $\delta \in[0,1]$.

Definition 2.7. The operators $L_{m}^{\delta}: E(I \times I) \rightarrow F(J \times J), m \in \mathbb{N}$, defined for any function $f \in E(I \times I)$ and any $(x, y) \in J \times J$ by

$$
\begin{equation*}
\left(L_{m}^{\delta} f\right)(x, y)=\sum_{k=0}^{p_{m}}\left(\delta \varphi_{m, k}(x)+(1-\delta) \varphi_{m, k}(y)\right) A_{m, k}^{*}(f) \tag{2.19}
\end{equation*}
$$

are named the bivariate operators of δL-type.
THEOREM 2.8. The $L_{m}^{\delta}, m \in \mathbb{N}$ operators are linear and positive on $E((I \times I) \cap(J \times J))$.

Proof. The proof follows immediately.

3. Main results

Theorem 3.1. Let $f: I \times I \rightarrow \mathbb{R}$ be a function.
If f is continuous in $(x, x),(y, y) \in(I \times I) \cap(J \times J)$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m}^{\delta} f\right)(x, y)=\delta f(x, x)+(1-\delta) f(y, y) \tag{3.1}
\end{equation*}
$$

Assume that f is continuous on $I \times I$ and there exists an interval $K \subset I \cap J$ such that there exists $m(0) \in \mathbb{N}$ and $k_{2} \in \mathbb{R}$ depending on K, so that for any $m \geq m(0)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, 2}^{*} L_{m}\right)(x)}{m^{\alpha_{2}}} \leq k_{2} \tag{3.2}
\end{equation*}
$$

Then the convergence given in (3.1) is uniform on $K \times K$ and

$$
\begin{equation*}
\left|\left(L_{m}^{\delta} f\right)(x, y)-(\delta f(x, x)+(1-\delta) f(y, y))\right| \leq\left(1+k_{2}\right) \omega\left(F ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right) \tag{3.3}
\end{equation*}
$$

for any $(x, y) \in K \times K$ and $m \in \mathbb{N}, m \geq m(0)$.
Proof. If $m \in \mathbb{N}$, then

$$
\left(L_{m}^{\delta} f\right)(x, y)=\delta \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) A_{m, k}^{*}(f)+(1-\delta) \sum_{k=0}^{p_{m}} \varphi_{m, k}(y) A_{m, k}^{*}(f)
$$

and taking (2.16) into account, we obtain

$$
\begin{equation*}
\left(L_{m}^{\delta} f\right)(x, y)=\delta\left(L_{m} F\right)(x)+(1-\delta)\left(L_{m} F\right)(y) \tag{3.4}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \left|\left(L_{m}^{\delta} f\right)(x)-[\delta f(x, x)+(1-\delta) f(y, y)]\right| \\
& =\left|\delta\left[\left(L_{m} F\right)(x)-F(x)\right]+(1-\delta)\left[\left(L_{m} F\right)(y)-F(y)\right]\right| \\
& \leq \delta\left|\left(L_{m} F\right)(x)-F(x)\right|+(1-\delta)\left|\left(L_{m} F\right)(y)-F(y)\right|
\end{aligned}
$$

and apply the Corollary 2.6.
Remark 3.2. In general, the sequence $\left(L_{m}^{\delta} f\right)_{m \geq 1}$, where $f: I \times I \rightarrow \mathbb{R}$ is doesn't converge to the function f.

Lemma 3.3. Let the GBS operators $\left(U L_{m}^{\delta}\right)_{m \geq 1}$ associated to the $\left(L_{m}^{\delta}\right)_{m \geq 1}$ operators. If $m \in \mathbb{N}, U L_{m}^{\delta}: E(I \times I) \rightarrow F(J \times \bar{J})$ have the form

$$
\begin{align*}
\left(U L_{m}^{\delta} f\right)(x, y)= & \delta\left[\left(L_{m} f_{x}\right)(x)+\left(L_{m} f^{y}\right)(x)\right] \tag{3.5}\\
& +(1-\delta)\left[\left(L_{m} f_{x}\right)(y)+\left(L_{m} f^{y}\right)(y)\right]-\left(L_{m}^{\delta} f\right)(x, y) \\
= & \delta\left[\left(L_{m} f_{x}\right)(x)+\left(L_{m} f^{y}\right)(x)-\left(L_{m} F\right)(x)\right] \\
& +(1-\delta)\left[\left(L_{m} f_{x}\right)(y)+\left(L_{m} f^{y}\right)(y)-\left(L_{m} F\right)(y)\right]
\end{align*}
$$

where $(x, y) \in J \times J$ and $f \in E(I \times I)$.

Proof. It results from definition of GBS operator, (2.1), (2.16) - (2.18) and (3.4).

Theorem 3.4. Let $f: I \times I \rightarrow \mathbb{R}$ be a function.
If $(x, y) \in(I \times I) \cap(J \times J)$, the functions f_{x}, f^{y} and F are s times differentiable in x and y, the functions $\frac{\partial^{s} f_{x}}{\partial \tau^{s}}, \frac{\partial^{s} f^{y}}{\partial t^{s}}$ and $F^{(s)}$ are continuous in x and y, then

$$
\begin{align*}
& \lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left\{\left(U L_{m}^{\delta} f\right)(x, y)\right. \tag{3.6}\\
& -\sum_{i=0}^{s} \frac{1}{m^{i} i!}\left[\delta\left(\frac{\partial^{i} f}{\partial \tau^{i}}(x, x)+\frac{\partial^{i} f}{\partial t^{i}}(x, y)-F^{(i)}(x)\right)\left(T_{m, i}^{*} L_{m}\right)(x)\right. \\
& \left.\left.+(1-\delta)\left(\frac{\partial^{i} f}{\partial \tau^{i}}(x, y)+\frac{\partial^{i} f}{\partial t^{i}}(y, y)-F^{(i)}(y)\right)\left(T_{m, i}^{*} L_{m}\right)(y)\right]\right\}=0 .
\end{align*}
$$

Assume that the functions f_{x}, f^{y} and F are s times differentiable on I for any $x, y \in I$, with $\frac{\partial^{s} f^{y}}{\partial \tau^{s}}, \frac{\partial^{s} f_{x}}{\partial t^{s}}$ and $F^{(s)}$ continuous on I for any $x, y \in I$ and there exists an interval $K \subset I \cap J$ such that there exist $m(s) \in \mathbb{N}$ and $k_{j} \in \mathbb{R}$ depending on K, so that for any $m \geq m(s)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, j}^{*} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j} \tag{3.7}
\end{equation*}
$$

where $j \in\{s, s+s\}$. Then the convergence given in (3.6) is uniform on $K \times K$ and
(3.8) $m^{s-\alpha_{s}} \mid\left(U L_{m}^{\delta} f\right)(x, y)$

$$
\begin{gathered}
-\sum_{i=0}^{s} \frac{1}{m^{i} i!}\left[\delta\left(\frac{\partial^{i} f}{\partial \tau^{i}}(x, x)+\frac{\partial^{i} f}{\partial t^{i}}(x, y)-F^{(i)}(x)\right)\left(T_{m, i}^{*} L_{m}\right)(x)\right. \\
\left.+(1-\delta)\left(\frac{\partial^{i} f}{\partial \tau^{i}}(x, y)+\frac{\partial^{i} f}{\partial t^{i}}(y, y)-F^{(i)}(y)\right)\left(T_{m, i}^{*} L_{m}\right)(y)\right] \mid \\
\leq \frac{1}{s!}\left(k_{s}+k_{s+2}\right)\left[\omega\left(\frac{\partial^{s} f_{x}}{\partial \tau^{s}} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)+\omega\left(\frac{\partial^{s} f^{y}}{\partial t^{s}} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)+\right. \\
\left.+\omega\left(F^{(s)} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)\right]
\end{gathered}
$$

for any $x, y \in K$ and any $m \geq m(s)$.

Proof. We use the (2.5) relation from Theorem 3.1 for the functions f_{x}, f^{y} and F and we obtain (3.8) relation. If we note by S the left member of (3.8) relation and taking (2.7) relation into account, we can write

$$
\begin{aligned}
& S=m^{s-\alpha_{s}} \left\lvert\, \delta\left\{\left[\left(L_{m} f_{x}\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial \tau^{i}}(x, x)\left(T_{m, i}^{*} L_{m}\right)(x)\right]\right.\right. \\
& +\left[\left(L_{m} f^{y}\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial t^{i}}(x, y)\left(T_{m, i}^{*} L_{m}\right)(x)\right] \\
& \left.+\left[\sum_{i=0}^{s} \frac{1}{m^{i} i!} F^{(i)}(x)\left(T_{m, i}^{*} L_{m}\right)(x)-\left(L_{m} F\right)(x)\right]\right\} \\
& +(1-\delta)\left\{\left[\left(L_{m} f_{x}\right)(y)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial \tau^{i}}(x, y)\left(T_{m, i}^{*} L_{m}\right)(y)\right]\right. \\
& +\left[\left(L_{m} f^{y}\right)(y)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial t^{i}}(y, y)\left(T_{m, i}^{*} L_{m}\right)(y)\right] \\
& \left.+\left[\sum_{i=0}^{s} \frac{1}{m^{i} i!} F^{(i)}(y)\left(T_{m, i}^{*} L_{m}\right)(y)-\left(L_{m} F\right)(y)\right]\right\} \mid \\
& \leq \delta\left[m^{s-\alpha_{s}}\left|\left(L_{m} f_{x}\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial \tau^{i}}(x, x)\left(T_{m, i}^{*} L_{m}\right)(x)\right|\right. \\
& +m^{s-\alpha_{s}}\left|\left(L_{m} f^{y}\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial t^{i}}(x, y)\left(T_{m, i}^{*} L_{m}\right)(x)\right| \\
& \left.+m^{s-\alpha_{s}}\left|\left(L_{m} F\right)(x)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} F^{(i)}(x)\left(T_{m, i}^{*} L_{m}\right)(x)\right|\right] \\
& +(1-\delta)\left[m^{s-\alpha_{s}}\left|\left(L_{m} f_{x}\right)(y)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial \tau^{i}}(x, y)\left(T_{m, i}^{*} L_{m}\right)(y)\right|\right. \\
& +\left|\left(L_{m} f^{y}\right)(y)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} \frac{\partial^{i} f}{\partial t^{i}}(y, y)\left(T_{m, i}^{*} L_{m}\right)(y)\right| \\
& +\left|\left(L_{m} F\right)(y)-\sum_{i=0}^{s} \frac{1}{m^{i} i!} F^{(i)}(y)\left(T_{m, i}^{*} L_{m}\right)(y)\right| \\
& \leq \delta\left\{\frac { 1 } { s ! } (k _ { s } + k _ { s + 2 }) \left[\omega\left(\frac{\partial^{s} f_{x}}{\partial \tau^{s}} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)+\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\omega\left(\frac{\partial^{s} f^{y}}{\partial t^{s}} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)+\omega\left(F^{(s)} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)\right]\right\} \\
& +(1-\delta)\left\{\frac { 1 } { s ! } (k _ { s } + k _ { s + 2 }) \left[\omega\left(\frac{\partial^{s} f_{x}}{\partial \tau^{s}} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)\right.\right. \\
& \left.\left.+\omega\left(\frac{\partial^{s} f^{y}}{\partial t^{s}} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)+\omega\left(F^{(s)} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)\right]\right\}
\end{aligned}
$$

from where we obtain (3.8) relation. From (3.8) the uniform convergence for (3.6) results.

Theorem 3.5. Let $f: I \times I \rightarrow \mathbb{R}$ be a function.
If $(x, y) \in(I \times I) \cap(J \times J)$, the functions f_{x}, f^{y} and F are s times differentiable in x and y, the functions $\frac{\partial^{s} f_{x}}{\partial \tau^{s}}, \frac{\partial^{s} f^{y}}{\partial t^{s}}$ and $F^{(s)}$ are continuous in x and y, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(U L_{m}^{\delta} f\right)(x, y)=f(x, y) \tag{3.9}
\end{equation*}
$$

if $s=0$, and

$$
\begin{align*}
& \lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left\{\left(U L_{m}^{\delta} f\right)(x, y)-\sum_{i=0}^{s-1} \frac{1}{m^{i} i!}\left[\delta \left(\frac{\partial^{i} f}{\partial \tau^{i}}(x, x)\right.\right.\right. \tag{3.10}\\
&\left.+\frac{\partial^{i} f}{\partial t^{i}}(x, y)-F^{(i)}(x)\right)\left(T_{m, i}^{*} L_{m}\right)(x) \\
&\left.\left.+(1-\delta)\left(\frac{\partial^{i} f}{\partial \tau^{i}}(x, y)+\frac{\partial^{i} f}{\partial t^{i}}(y, y)-F^{(i)}(y)\right)\left(T_{m, i}^{*} L_{m}\right)(y)\right]\right\} \\
&= \frac{1}{s!}\left[\delta\left(\frac{\partial^{s} f}{\partial \tau^{s}}(x, x)+\frac{\partial^{s} f}{\partial t^{s}}(x, y)-F^{(s)}(x)\right) B_{s}(x)\right. \\
&\left.+(1-\delta)\left(\frac{\partial^{s} f}{\partial \tau^{s}}(x, y)+\frac{\partial^{s} f}{\partial t^{s}}(y, y)-F^{(s)}(y)\right) B_{s}(y)\right]
\end{align*}
$$

Assume that the functions f_{x}, f^{y} and F are s times differentiable on I for any $x, y \in I$, with $\frac{\partial^{s} f_{x}}{\partial \tau^{s}}, \frac{\partial^{s} f^{y}}{\partial t^{s}}, F^{(s)}$ continuous on I for any $x, y \in I$ and there exists an interval $K \subset I \cap J$ such that there exist $m(s) \in \mathbb{N}$ and $k_{j} \in \mathbb{R}$ depending on K so that for any $m \geq m(s)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, j}^{*} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j} \tag{3.11}
\end{equation*}
$$

where $j \in\{s, s+2\}$. Then the convergence given in (3.9) and (3.10) is uniform on $K \times K$.

Proof. It results from Theorem 3.4 and Corollary 2.5.
Corollary 3.6. Let $f: I \times I$ be a function.
If $(x, y) \in(I \times I) \cap(J \times J)$, the functions f_{x}, f^{y} and F are continuous in x and y, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(U L_{m}^{\delta} f\right)(x, y)=f(x, y) \tag{3.12}
\end{equation*}
$$

Assume that the functions f_{x}, f^{y} and F are continuous on I for any $x, y \in I$ and there exists an interval $K \subset I \cap J$ such that there exist $m(0) \in \mathbb{N}$ and $k_{2} \in \mathbb{R}$ depending on K, so that for any $m \in \mathbb{N}, m \geq m(0)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, 2}^{*} L_{m}\right)(x)}{m^{\alpha_{2}}} \leq k_{2} . \tag{3.13}
\end{equation*}
$$

Then the convergence given in (3.12) is uniform on $K \times K$ and

$$
\begin{align*}
\mid\left(U L_{m}^{\delta} f\right)(x, y) & -f(x, y) \left\lvert\, \leq\left(1+k_{2}\right)\left[\omega\left(f_{x} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)\right.\right. \tag{3.14}\\
& \left.+\omega\left(f^{y} ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)+\omega\left(F ; \frac{1}{\sqrt{m^{2-\alpha_{2}}}}\right)\right]
\end{align*}
$$

for any $x, y \in K$ and any $m \geq m(s)$.
Proof. It results from Theorem 3.4 for $s=0$.
Corollary 3.7. Let $f: I \times I \rightarrow \mathbb{R}$ be a function.
If $(x, y) \in(I \times I) \cap(J \times J)$, the functions f_{x}, f^{y} and F are two times differentiable in x and y, the functions $\frac{\partial^{2} f_{x}}{\partial \tau^{2}}, \frac{\partial^{2} f^{y}}{\partial t^{2}}$ and $F^{\prime \prime}$ are continuous in x and y, then

$$
\begin{align*}
\lim _{m \rightarrow \infty} & m^{2-\alpha_{2}}\left\{\left(U L_{m}^{\delta} f\right)(x, y)-f(x, y)\right. \tag{3.15}\\
& -\frac{1}{m}\left[\delta\left(\frac{\partial f}{\partial \tau}(x, x)+\frac{\partial f}{\partial t}(x, y)-F^{\prime}(x)\right)\left(T_{m, 1}^{*} L_{m}\right)(x)\right. \\
& \left.\left.+(1-\delta)\left(\frac{\partial f}{\partial \tau}(x, y)+\frac{\partial f}{\partial t}(y, y)-F^{\prime}(y)\right)\left(T_{m, 1}^{*} L_{m}\right)(y)\right]\right\} \\
= & \frac{1}{2}\left[\delta\left(\frac{\partial^{2} f}{\partial \tau^{2}}(x, x)+\frac{\partial^{2} f}{\partial t^{2}}(x, y)-F^{\prime \prime}(s)\right) B_{s}(x)\right. \\
& \left.+(1-\delta)\left(\frac{\partial^{2} f}{\partial \tau^{2}}(x, y)+\frac{\partial^{2} f}{\partial t^{2}}(y, y)-F^{\prime \prime}(y)\right) B_{s}(y)\right]
\end{align*}
$$

Assume that the functions f_{x}, f^{y} and F are two times differentiable on I for any $x, y \in I$, with $\frac{\partial^{2} f_{x}}{\partial \tau^{2}}, \frac{\partial^{2} f^{y}}{\partial t^{2}}$ and $F^{\prime \prime}$ continuous on I for any $x, y \in I$ and there exists an interval $K \subset I \cap J$ such that there exist $m(2) \in \mathbb{N}$ and $k_{j} \in \mathbb{R}$ depending on K so that for any $m \geq m(2)$ and any $x \in K$ we have

$$
\begin{equation*}
\frac{\left(T_{m, j}^{*} L_{m}\right)}{m^{\alpha_{j}}} \leq k_{j} \tag{3.16}
\end{equation*}
$$

where $j \in\{2,4\}$. Then the convergence given in (3.15) is uniform on $K \times K$.
Proof. It results from Theorem 3.5 for $s=2$.

In the following, by particularization and applying Theorem 3.5, Corollary 3.6 and Corollary 3.7, we can obtain Voronovskaja's type theorem and approximation theorem for some known operators. Because every application is a simple substitute in the theorems of this section, we won't replace anything.

In Applications 3.1-3.4, let $p_{m}=m, \varphi_{m, k}=p_{m, k}$, where $m \in \mathbb{N}, k \in$ $\{0,1, \ldots, m\}$ and $K=[0,1]$.

Application 3.1. If $I=J=[0,1], E(I)=F(J)=C([0,1]), A_{m, k}(f)=$ $f\left(\frac{k}{m}\right)$ where $m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$ and $f \in C([0,1])$ then we obtain the Bernstein operators. We have $k_{2}=\frac{5}{4}, k_{4}=\frac{19}{16},\left(T_{m, 1}^{*} B_{m}\right)(x)=0, x \in[0,1]$, $m \in \mathbb{N}$ and $m(0)=m(2)=1$ (see [19]).

If $\delta=\frac{1}{2}$ we obtain the GBS operators $\left(U B_{m}^{\frac{1}{2}}\right)_{m \geq 1}$ associated to the $\left(B_{m}^{\frac{1}{2}}\right)_{m \geq 0}$ operators, studied in the paper [2]. These operators do not satisfy the assumptions of Theorem A from paper [3]. There exists no satisfactory choice of δ_{1} and δ_{2} in Corollary 5 to express the degree of approximation of $\left(U B_{m}^{\frac{1}{2}}\right)_{m \geq 1}$ operators (see [3]).

Application 3.2. If $I=J=[0,1], E(I)=L_{1}([0,1]), F(J)=C([0,1])$, $A_{m, k}(f)=(m+1) \int_{0}^{1} p_{m, k}(t) f(t) d t$, where $m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$ and $f \in L_{1}([0,1])$, then we obtain the Durrmeyer operators. In this case $k_{2}=\frac{3}{2}$, $k_{4}=\frac{7}{4},\left(T_{m, 1}^{*} M_{m}\right)(x)=\frac{m(1-2 x)}{m+2}, x \in[0,1], m \in \mathbb{N}$ and $m(0)=m(2)=3$ (see [19]).

Application 3.3. If $I=J=[0,1], E(I)=L_{1}([0,1]), F(J)=C([0,1])$, $A_{m, k}(f)=(m+1) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(t) d t$, where $m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$ and $f \in L_{1}([0,1])$, then we obtain the Kantorovich operators. We have $k_{2}=1$, $k_{4}=\frac{3}{2}, \quad\left(T_{m, 1}^{*} K_{m}\right)(x)=\frac{m}{2(m+1)}(1-2 x), x \in[0,1], m \in \mathbb{N}$ and $m(0)=m(2)=3$ (see [19]).

Application 3.4. Let $\alpha, \beta \in \mathbb{R}, \alpha \geq 0$. If $I=\left[0, \mu^{(\alpha, \beta)}\right], J=[0,1]$, $E(I)=C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right), F(J)=C([0,1]), A_{m, k}=f\left(\frac{k+\alpha}{m+\beta}\right)$, where $m \in \mathbb{N}$, $k \in\{0,1, \ldots, m\}$ and $f \in C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right)$, then we obtain the Stancu operators.

Application 3.5. Let $p \in \mathbb{N}_{0}$. If $I=[0,1+p], J=[0,1], E(I)=C([0,1+$ $p]), F(J)=C([0,1]), K=[0,1], \varphi_{m, k}=\widetilde{p}_{m, k}=p_{m+p, k}, A_{m, k}(f)=f\left(\frac{k}{m}\right)$, $p_{m}=m+p$, where $m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$ and $f \in C([0,1+p])$, then we obtain the Schurer operators.

In Applications 3.6-3.8 and Application 3.10 let $K=[0, b], b>0$.
Application 3.6. If $I=J=[0, \infty), E(I)=F(J)=C([0, \infty))$, $\varphi_{m, k}(x)=\binom{m}{k} x^{k} \frac{1}{(1+x)^{m}}$ for any $x \in[0, \infty), A_{m, k}(f)=f\left(\frac{k}{m+1-k}\right)$, $p_{m}=m$, where $m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$ and $f \in C([0, \infty))$, then we obtain the Bleimann-Butzer-Hahn operators. In this case $k_{2}=4 b(1+b)^{2}$ (see [22] or [25]).

In Applications 3.7-3.10 let $p_{m}=\infty$ for any $m \in \mathbb{N}$.
Application 3.7. If $I=J=[0, \infty), E(I)=C_{2}([0, \infty)), F(J)=$ $C([0, \infty)), \varphi_{m, k}(x)=e^{-m x} \frac{(m x)^{k}}{k!}$ for any $x \in[0, \infty), A_{m, k}(f)=f\left(\frac{k}{m}\right)$, where $m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and $f \in C_{2}([0, \infty))$, then we obtain the Mirakjan-Favard-Szász operators. We have $k_{2}=b, k_{4}=3 b^{2}+b,\left(T_{m, 1}^{*} S_{m}\right)(x)=0$, $x \in[0, \infty), m \in \mathbb{N}$ and $m(0)=m(2)=1$ (see [21]).

Application 3.8. If $I=J=[0, \infty), E(I)=C_{2}([0, \infty)), F(J)=$ $C([0, \infty)), \varphi_{m, k}(x)=(1+x)^{-m}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k}$ for any $x \in[0, \infty)$, $A_{m, k}(f)=f\left(\frac{k}{m}\right)$ where $m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and $f \in C_{2}([0, \infty))$, then we obtain the Baskakov operators. In this case $k_{2}=b(1+b), k_{4}=9 b^{4}+18 b^{3}+10 b^{2}+b$, $\left(T_{m, 1}^{*} V_{m}\right)(x)=0, x \in[0, \infty), m \in \mathbb{N}$ and $m(0)=m(2)=1$ (see [21]).

Application 3.9. If $I=J=K=[0,1], E(I)=E(J)=C([0,1])$, $\varphi_{m, k}(x)=\binom{m+k}{k}(1-x)^{m+1} x^{k}$ for any $x \in[0, \infty), A_{m, k}(f)=f\left(\frac{k}{m+k}\right)$, where $m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and $f \in C([0,1])$, then we obtain the Meyer-König and Zeller operators. We have $k_{2}=2$ (see [21]).

Application 3.10. If $I=J=[0, \infty), E(I)=F(J)=C([0, \infty))$, $\varphi_{m, k}(x)=e^{-\frac{(m+k) x}{1+x}} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k}$ for any $x \in[0, \infty), A_{m, k}(f)=$ $f\left(\frac{k}{m}\right)$ where $m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and $f \in C([0, \infty))$, then we obtain the Ismail-May operators. In this case $k_{2}=b(1+b)^{2}, k_{4}=b^{2}(1+b)^{4}+1$, $\left(T_{m, 1}^{*} R_{m}\right)(x)=A_{m, 1}(x)=0, x \in[0, \infty), m \in \mathbb{N}, m(0)=1$ and $m(2)=m_{2}$ (see [24]).

References

[1] O. Agratini, Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000 (in Romanian).
[2] I. Badea and D. Andrica, Voronovskaja-type theorems for certain non-positive linear operator, Rev. Anal. Num. Théor. Approx. 15 (1986), 95-103.
[3] C. Badea and C. Cottin, Korovkin-type Theorems for Generalized Boolean Sum Operators, Colloquia Mathematica Societatis János Bolyai, 58, Approximation Theory, Kecskemét (Hungary) (1990), 51-67.
[4] V. A. Baskakov, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
[5] M. Becker and R. J. Nessel, A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr. 160 (1978), 195-206.
[6] G. Bleimann, P. L. Butzer and L. A. Hahn, Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math. 42 (1980), 255-262.
[7] S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow (2), 13 (1912-1913), 1-2.
[8] E. W. Cheney and A. Sharma, Bernstein power series, Canadian J. Math. 16 (1964), 241-252.
[9] M. M. Derriennic, Sur l'approximation des fonctions intégrables sur [0, 1] par les polynômes de Bernstein modifiés, J. Approx. Theory 31 (1981), 325-343.
[10] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Verlag, Berlin, 1987.
[11] J. L. Durrmeyer, Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
[12] J. Favard, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl. 23 (9) (1944), 219-247.
[13] M. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462.
[14] L. V. Kantorovich, Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. URSS (1930), 563-568, 595-600.
[15] W. Meyer-König and K. Zeller, Bernsteinsche Potenzreihen, Studia Math. 19 (1960), 89-94.
[16] G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR 31 (1941), 201-205 (in Russian).
[17] M. W. Müller, Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
[18] O.T . Pop, New properties of the Bernstein-Stancu operators, Anal. Univ. Oradea, Fasc. Matematica Tom XI (2004), 51-60.
[19] O. T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx. 34 (2005), 79-91.
[20] O. T. Pop, About a class of linear and positive operators, Carpathian J. Math. 21 (2005), 99-108.
[21] O. T. Pop, About some linear and positive operators defined by infinite sum, Dem. Math. 39 (2006), 377-388.
[22] O. T. Pop, About operator of Bleimann, Butzer and Hahn, Anal. Univ. Timişoara 43 (2005), 117-127.
[23] O. T. Pop, The generalization of Voronovskaja's theorem for a class of bivariate operators, to appear in Stud. Univ. Babes-Bolyai Math.
[24] O. T. Pop, The generalization of Voronovskaja's theorem for exponential operators, Creative Math. \& Inf. 16 (2007), 54-62.
[25] O. T. Pop, About a general property for a class of linear positive operators and applications, Rev. Anal. Num. Théor. Approx. 34 (2005), 175-180.
[26] F. Schurer, Linear positive operators in approximation theory, Math. Inst. Tech. Univ. Delft. Report, 1962.
[27] D. D. Stancu, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys. 14 (1969), 31-45 (in Romanian).
[28] D. D. Stancu, Gh. Coman, O. Agratini and R. Trîmbiţaş, Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (in Romanian).
[29] O. Szász, Generalization of. S. N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards 45 (1950), 239-245.
[30] A.F. Timan, Theory of Approximation of Functions of Real Variable, New York, Macmillan Co. 1963, MR22\#8257.
[31] E. Voronovskaja, Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS (1932), 79-85.
O. T. Pop

National College "Mihai Eminescu"
5 Mihai Eminescu Street
Satu Mare 440014
Romania
E-mail: ovidiutiberiu@yahoo.com
Received: 20.11.2006.
Revised: 27.2.2007.

