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Abstract. Since the theory of ideals plays an important role in the
theory of quotient semirings, in this paper, we will make an intensive study
of the notions of Noetherian, Artinian, prime, primary, weakly primary
and k-maximal ideals in commutative quotient semirings. The bulk of this
paper is devoted to stating and proving analogues to several well-known
theorems in the theory of the residue class rings.

1. Introduction

The concept of semirings was introduced by H. S. Vandiver in 1935 and
has since then been studied by many authors (see, for example, [2], [3], [5], [6],
[7]). This paper is concerned with generalization of some results of factor ring
theory to quotient semiring theory. A number of results concerning prime,
weakly prime, primary, weakly primary, maximal and k-maximal ideals of
such semirings are given (see section 2).

For the sake of completeness, we state some definitions and notations
used throughout. A commutative semiring R is defined as an algebraic system
(R, +, ·) such that (R, +) and (R, ·) are commutative semigroups, connected
by a(b + c) = ab + ac for all a, b, c ∈ R, and there exists 0 ∈ R such that
r + 0 = r and r0 = 0r = 0 for each r ∈ R. In this paper all semirings
considered will be assumed to be commutative semirings. A semiring R is
said to be a semidomain if ab = 0 (a, b ∈ R), then either a = 0 or b = 0.
A semifield is a semiring in which non-zero elements form a group under
multiplication.

A subset I of a semiring R will be called an ideal if a, b ∈ I and r ∈ R
implies a + b ∈ I and ra ∈ I. A subtractive ideal (= k-ideal) K is an ideal
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such that if x, x + y ∈ K then y ∈ K (so {0} is a k-ideal of R). A prime ideal
of R is a proper ideal P of R in which x ∈ P or y ∈ P whenever xy ∈ P . So
P is prime if and only if A and B are ideals in R such that AB ⊆ P , then
A ⊆ P or B ⊆ P where AB = {ab : a ∈ A and b ∈ B} (see [3, Theorem 5]).
A primary ideal of P of R is a proper ideal of R such that, if xy ∈ P and
x /∈ P , then yn ∈ P for some positive integer n.

An ideal I of a semiring R is called a partitioning ideal (= Q-ideal) if
there exists a subset Q of R such that

(1) R = ∪{q + I : q ∈ Q}
(2) If q1, q2 ∈ Q then (q1 + I) ∩ (q2 + I) 6= ∅ if and only if q1 = q2.

Let I be a Q-ideal of a semiring R and let R/I = {q + I : q ∈ Q}. Then
R/I forms a semiring under the binary operations ⊕ and ⊙ defined as follows:

(q1 + I) ⊕ (q2 + I) = q3 + I

where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I.

(q1 + I) ⊙ (q2 + I) = q4 + I

where q4 ∈ Q is the unique element such that q1q2 +I ⊆ q4 +I. This semiring
R/I is called the quotient semiring of R by I. By definition of Q-ideal, there
exists a unique q′ ∈ Q such that 0 + I ⊆ q′ + I. Then q′ + I is a zero element
of R/I. Clearly, if R is commutative, then so is R/I (see [5, 6]).

2. Quotient of semirings

Our starting point is the following lemma:

Lemma 2.1. Let R be a semiring, I a Q-ideal of R and A a k-ideal of R
with I ⊆ A. Then I is a A ∩ Q-ideal of A.

Proof. It suffices to show that A = ∪{q + I : q ∈ Q ∩ A}. Since
∪{q + I : q ∈ Q ∩ A} ⊆ A is trivial, we will prove the reverse inclusion.
Suppose that x ∈ A. Then x ∈ q + I for some q ∈ Q; hence there is an
element a of I ⊆ A such that x = q + a. Then q ∈ A ∩Q since A is a k-ideal,
so we have equality.

Proposition 2.2. Let R be a semiring, I a Q-ideal of R and A a k-ideal

of R with I ⊆ A. Then A/I = {q + I : q ∈ A ∩ Q} is a k-ideal of R/I.

Proof. Let q′ be the unique element in Q such that q′ + I is the zero
in R/I. First, we show that q′ + I ∈ A/I. Let a + I ∈ A/I ⊆ R/I where
a ∈ A ∩ Q. Then (a + I) ⊕ (q′ + I) = a + I where a + q′ + I ⊆ a + I, so
a + q′ + e′ = a + f ′ for some e′, f ′ ∈ I; hence q′ ∈ A ∩ Q since A is a k-ideal
of R. Thus q′ + I ∈ A/I. Next, suppose that q̄1 = q1 + I, q̄2 = q2 + I ∈ A/I
where q1, q2 ∈ A∩Q. There is a unique element q3 ∈ Q with q̄1 ⊕ q̄2 = q3 + I
and q1 + q2 + I ⊆ q3 + I, so q1 + q2 + e = q3 + f ∈ A for some e, f ∈ I; hence
q3 ∈ Q ∩ A since A is a k-ideal of R. Therefore, q̄1 ⊕ q̄2 ∈ A/I. Now it is
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enough to show that if r+I ∈ R/I and a+I ∈ A/I (where r ∈ Q, a ∈ A∩Q),
then (r + I) ⊙ (a + I) ∈ A/I. There exists the unique element q4 ∈ Q such
that (r + I) ⊙ (a + I) = q4 + I and ra + I ⊆ q4 + I, so ra + c = q4 + d ∈ A
for some c, d ∈ I. It follows that q4 ∈ A ∩ Q; hence q4 + I ∈ A/I. Thus A/I
is an ideal of R/I.

Finally, assume that t+I ∈ A/I and (t+I)⊕(s+I) = u+I ∈ A/I where
t, u ∈ A∩Q, s ∈ Q and t+ s+ I ⊆ u+ I. Then t+ s+ c = u+ d ∈ A for some
c, d ∈ I; thus s ∈ A ∩ Q since A is a k-ideal of R. Therefore, s + I ∈ A/I, as
needed.

Theorem 2.3. Let R be a semiring, I a Q-ideal of R and L a k-ideal of

R/I. Then L = J/I for some k-ideal J of R.

Proof. Assume that q′ is the unique element in Q such that q′ + I is
the zero in R/I and set J = {r ∈ R : q1 + I ∈ L} (note that if r ∈ R, then
there exists the unique element q1 ∈ Q such that r ∈ q1 + I). We show that
J is a k-ideal of R and L = J/I. The proof can now be broken down into a
sequence of steps.

1) I ⊆ J . Let a ∈ I. By [3, Lemma 36], a ∈ I = q′ + I ∈ L, so a ∈ J .
Thus I ⊆ J .

2) J is an ideal of R. For if r and s are in J , then there are elements
q1, q2 ∈ Q such that q1 + I, q2 + I ∈ L, r = q1 + c and s = q2 + d for some
c, d ∈ I, so (q1 + I)⊕ (q2 + I) = q3 + I ∈ L where q3 ∈ Q is the unique element
such that q1 + q2 + I ⊆ q3 + I; hence r + s ∈ q1 + q2 + I ⊆ q3 + I ∈ L. Thus
r + s ∈ J . Similarly, if r ∈ J and t ∈ R, then rt = tr ∈ J .

3) J is a k-ideal of R. Let a, a + b ∈ J . Then there are elements q1, q2

and q3 of Q such that a ∈ q1 + I ∈ L, a + b ∈ q2 + I ∈ L and b ∈ q3 + I,
so a = q1 + c, a + b = q2 + d and b = q3 + e for some c, d, e ∈ I; hence
a + b ∈ (q1 + q3 + I) ∩ (q2 + I). There is a unique element q4 of Q such that
(q1+I)⊕(q3+I) = q4+I where q1+q3+I ⊆ q4+I, so a+b ∈ (q2+I)∩(q4+I);
hence q2 = q4. Therefore, q3 + I ∈ L since L is k-ideal; hence b ∈ J . Thus, J
is a k-ideal of R. Finally, it is easy to see that L = J/I = {q + I : q ∈ J ∩Q}.

Lemma 2.4. Let R be a semiring with an identity 1, I a Q-ideal of R and

A a k-ideal of R with I ⊆ A. Then the following hold:

(i) There is a unique element q0 of Q such that q0 + I is an identity of

R/I.
(ii) If q0 + I is an identity of R/I and q0 + I ∈ A/I, then R/I = A/I.
(iii) If q1 + I is an invertible element of R/I with q1 + I ∈ A/I, then

R/I = A/I.

Proof. (i) By assumption, there is a unique element q0 of Q such that
1 = q0 + a for some a ∈ I. We show that q0 + I is an identity of R/I. Let
q1 + I ∈ R/I for some q1 ∈ Q. Then there is a unique element q2 of Q such
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that (q1 + I)⊙ (q0 + I) = q2 + I and q1q0 + I ⊆ q2 + I, so q1q0 + c = q2 + d for
some c, d ∈ I. Since q1+c = q1q0+q1a+c = q2+q1a+c+d ∈ (q1+I)∩(q2+I),
we must have q1 = q2, as required.

(ii) Let q1+I ∈ R/I where q1 ∈ Q. Then (q1+I)⊙(q0+I) = (q1+I) ∈ A/I
such that q1q0 + I ⊆ q1 + I, so q1q0 + e = q1 + f ∈ A for some e, f ∈ I since
q0 ∈ A; hence q1 ∈ A ∩ Q since A is k-ideal. Thus, R/I = A/I.

(iii) follows from (ii).

Theorem 2.5. Let R be a semiring, I a Q-ideal of R and P a k-ideal of

R with I ⊆ P . Then P is a prime ideal of R if and only if P/I is a prime

ideal of R/I.

Proof. Let P be a prime ideal of R. Suppose that q1 + I, q2 + I ∈ R/I
are such that (q1 + I) ⊙ (q2 + I) ∈ P/I where q1, q2 ∈ Q. Then there is a
unique element q3 ∈ Q ∩ P such that q1q2 + I ⊆ q3 + I ∈ P/I, so q1q2 ∈ P .
Then P prime gives either q1 ∈ P or q2 ∈ P ; hence either q1 + I ∈ P/I or
q2 + I ∈ P/I by Proposition 2.2.

Conversely, suppose that P/I is prime. Let a, b ∈ R such that ab ∈ P .
Then there are elements q1, q2 ∈ Q such that a ∈ q1 + I and b ∈ q2 + I, so
a = q1+c and b = q2+d for some c, d ∈ I. Since ab = q1q2+q1d+cq2+cd ∈ P
and P is a k-ideal of R, we must have q1q2 ∈ P . Let q be the unique element in
Q such that (q1+I)⊙(q2+I) = q+I where q1q2+I ⊆ q+I, so q+e = q1q2+f
for some e, f ∈ I. Since P is a k-ideal of R, we get q ∈ Q∩P and q+I ∈ P/I;
hence P/I prime gives either q1 + I ∈ P/I or q2 + I ∈ P/I. It follows that
either q1 ∈ P (so a ∈ P ) or q2 ∈ P (so b ∈ P ). Thus P is prime.

Theorem 2.6. Let I be a proper Q-ideal of a semiring R. Then I is

prime if and only if R/I is semidomain.

Proof. Let q′ be the unique element in Q such that q′ + I is the zero
in R/I. Let I be a prime ideal of R and let q1 + I and q2 + I be elements
of R/I such that (q1 + I) ⊙ (q2 + I) = q′ + I where q1 and q2 are elements
of Q. If q1 ∈ I, then q1 ∈ (q′ + I) ∩ (q1 + I) by [3, Lemma 36]; hence
q1 + I = q′ + I. So suppose that q1 /∈ I. By assumption, q1q2 + I ⊆ q′ + I,
so q′ + e = q1q2 + f ∈ q′ + I = I and [6, Lemma 2] gives q1q2 ∈ I. Since I
is prime, we must have q2 ∈ I = q′ + I; hence q2 ∈ (q2 + I) ∩ (q′ + I), and it
follows that q2 + I = q′ + I. Thus R/I is semidomain.

Conversely, assume that R/I is a semidomain and let r, s ∈ R such that
r /∈ I and rs ∈ I. By [3, Lemma 36], we must have r /∈ q′ + I = I and
rs ∈ q′ + I. There are elements q1, q2 ∈ Q such that r + I ⊆ q1 + I and
s + I ⊆ q2 + I since I is a Q-ideal. Therefore, r = q1 + a and s = q2 + b for
some a, b ∈ I. As r ∈ q1 + I and r /∈ q′ + I, we get q1 + I 6= q′ + I. It is
easy to check that, rs ∈ q1q2 + I. Let q3 be the unique element in Q such
that q1q2 + I ⊆ q3 + I. Since rs ∈ (q′ + I) ∩ (q3 + I), we must have q′ = q3
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and (q1 + I) ⊙ (q2 + I) = q′ + I; hence s ∈ q2 + I = q′ + I = I since R/I is
semidomain. Thus I is prime.

Corollary 2.7. Let R be a semiring. Then {0} is prime if and only if

R is semidomain.

Proof. This follows from Theorem 2.5 since {0} is a Q-ideal of R ∼= R/{0}
with Q = R.

Let R be a semiring. We define a proper ideal A of R to be weakly primary
(resp. weakly prime) if 0 6= ab ∈ A implies a ∈ A or bm ∈ A for some positive
integer m (resp. a ∈ A or b ∈ A). So a primary ideal (resp. prime ideal) is
a weakly primary (resp. weakly prime). However, since 0 is always weakly
primary (resp. weakly prime) by definition, a weakly primary ideal (a weakly
prime ideal) need not be primary (resp. prime). Clearly, every weakly prime
is weakly primary (see [1] and [4]).

Theorem 2.8. Let R be a semiring, I a Q-ideal of R and P a k-ideal of

R with I ⊆ P . Then the following hold:

(i) If P is a weakly primary ideal of R, then P/I is a weakly primary ideal

of R/I.
(ii) If I and P/I are weakly primary, then P is weakly primary.

Proof. (i) Let q′ be the unique element in Q such that q′ + I is the zero
in R/I. Assume that P is weakly prime and let q1+I and q2+I be elements of
R/I such that (q′+I) 6= (q1 +I)⊙(q2+I) ∈ P/I, so there is a unique element
q3 ∈ Q ∩ P with q′ 6= q3 and q1q2 + I ⊆ q3 + I; hence 0 6= q1q2 ∈ P since P
is a k-ideal. Then P weakly primary gives either q1 ∈ P or qn

2 ∈ P for some
n. If q1 ∈ P , then q1 + I ∈ P/I by Proposition 2.2. So suppose that qn

2 ∈ P .
Since q2 ∈ q2 + I, it is clear that qn

2 ∈ (q2 + I)n. Thus qn

2 ∈ (q2 + I)n ∩ qn

2 + I,
it follows that (q2 + I)n = qn

2 + I ∈ P/I. Therefore, P/I is weakly primary.
(ii) Let 0 6= ab ∈ P where a, b ∈ R. If ab ∈ I, then I weakly primary gives

either a ∈ I ⊆ P or bs ∈ I ⊆ P for some s. So we may suppose that ab /∈ I.
There are elements q1, q2 ∈ Q such that a ∈ q1 +I and b ∈ q2 +I, so a = q1 +c
and b = q2 + d for some c, d ∈ I. As ab = q1q2 + q1d + cq2 + cd, we must
have q1q2 ∈ P ∩ Q since P is a k-ideal of R. Let (q1 + I) ⊙ (q2 + I) = q4 + I
where q4 ∈ Q is the unique element such that q1q2 + I ⊆ q4 + I. It follows
that q4 ∈ P ∩ Q; hence either q1 + I ∈ P/I or (q2 + I)m = qm

2 + I ∈ P/I for
some m since P/I is weakly primary. If q1 + I ∈ P/I, then a = q1 + c ∈ P
by Proposition 2.2. If qm

2 + I ∈ P/I, then bm = (q2 + d)m = qm

2 + k ∈ P for
some k ∈ P . Thus P is weakly primary.

Corollary 2.9. Let R be a semiring, I a Q-ideal of R and P a k-ideal

of R with I ⊆ P . Then the following hold:

(i) If P is a weakly prime ideal of R, then P/I is a weakly prime ideal of

R/I.
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(ii) If I and P/I are weakly prime, then P is weakly prime.

Proof. This follows from Theorem 2.8.

A proper ideal I in a semiring R is said to be maximal (resp. k-maximal)
if J is an ideal (a k-ideal) in R such that I & J , then J = R.

Theorem 2.10. Let I be a proper Q-ideal of a semiring R with an identity

1. If I is a maximal ideal of R, then R/I is a semifield.

Proof. Assume that q′ ∈ Q is the unique element in Q such that q′ + I
is the zero in R/I and let q0 + I be the identity element of R/I by Lemma 2.4
where 1 = q0 + a for some a ∈ I and the unique element q0 ∈ Q. It suffices to
show that every non-zero element q1 + I of R/I is invertible. As I is a proper
ideal of R, we must have q0 /∈ I, so q1 /∈ I; hence I + Rq1 = R by maximality
of I. There exist r ∈ R and a ∈ I with rq1 + a = 1. As I is a Q-ideal of R,
r = q2 + c for some q2 ∈ Q and c ∈ I, so q1q2 + cq1 + a = 1 ∈ q1q2 + I. Since
(q1 + I) ⊙ (q2 + I) = q3 + I where q3 ∈ Q is the unique element such that
q1q2 + I ⊆ q3 + I, we must have 1 ∈ (q0 + I) ∩ (q3 + I); hence q3 = q0, and
the proof is complete.

Theorem 2.11. Let I be a proper Q-ideal of a semiring R with an identity

1. If R/I is a semifield, then I is a k-maximal ideal of R.

Proof. Suppose that q′ ∈ Q is the unique element in Q such that q′ + I
is the zero in R/I and let q0 + I be the identity element of R/I by Lemma
2.4 where 1 = q0 + a for some a ∈ I and the unique element q0 of Q. Assume
that R/I is a semifield and I & J for some k-ideal J of R; we show that
J = R. Then there are elements t ∈ Q and c ∈ J − I with c ∈ t + I, so
c = t + d for some d ∈ I; hence t ∈ J − I. If t + I = q′ + I = I, then
t = q′ ∈ I which is a contradiction. Therefore, there exists s + I ∈ R/I such
that (t+ I)⊙ (s+ I) = q0 + I; thus st+e = q0 +f for some e, f ∈ I. It follows
that st + a + e = q0 + a + f = 1 + f ∈ J , so 1 ∈ J since J is a k-ideal. Thus
J = R, as required.

Lemma 2.12. Let R be a semiring. Then the following hold:

(i) If I and J are k-ideals of R, I + J is a k-ideal of R.

(ii) An intersection of a family of k-ideals of R is k-ideal.

Proof. The proof is completely straightforward.

Lemma 2.13. Assume that I is a Q-ideal of a semiring R and let J, L be

k-ideals of R. Then the following hold:

(i) (I + J)/I is a k-ideal of R/I.
(ii) If I ⊆ J and I ⊆ L, then J/I = L/I if and only if J = L.
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Proof. (i) Since by [6, Lemma 2], every Q-ideal is k-ideal, we must
have I + J is k-ideal by Lemma 2.12; hence (I + J)/I is a k-ideal of R/I by
Proposition 2.2.

(ii) Let a ∈ J . Then a ∈ q1 + I for some q1 ∈ Q, so there is an element
c ∈ I ⊆ J such that a = q1 + c; hence J k-ideals gives q1 ∈ J . Thus
q1 + I ∈ J/I = L/I, so q1 + I = q2 + I for some q2 ∈ L ∩ Q. It follows that
q1 ∈ L since L is k-ideal. Therefore, a ∈ L; thus J ⊆ L. Similarly, L ⊆ J , as
required.

Theorem 2.14. Let R be a semiring, I a Q-ideal of R and P a k-ideal

of R with I ⊆ P . Then P is a k-maximal ideal of R if and only if P/I is a

k-maximal ideal of R/I.

Proof. Assume that P is a k-maximal ideal of R and let L be a k-ideal
of R/I such that P/I & L. It then follows from Theorem 2.3 that there exists
a k-ideal J of R with P/I & L = J/I, so P & J by Lemma 2.13; hence J = R.
Thus L = R/I. The other implication is similar.

If R is a semiring, then R is Noetherian (resp. Artinian) if any non-empty
set of k-ideals of R has a maximal (resp. minimal member) with respect to
set inclusion. This definition is equivalent to the ascending chain condition
(resp. descending chain condition) on k-ideals of R.

Theorem 2.15. Let I be a Q-ideal of a semiring R. Then the following

hold:

(i) If the semiring R is Noetherian, then R/I is a Noetherian semiring.

(ii) If the semiring R is Artinian, then R/I is a Artinian semiring.

Proof. (i) By Theorem 2.3, an ascending chain of k-ideals of R/I must
have the form

J1/I ⊆ J2/I ⊆ · · · ⊆ Jn/I ⊆ Jn+1/I ⊆ · · ·

where

J1 ⊆ J2 ⊆ · · · ⊆ Jn ⊆ Jn+1 ⊆ · · ·

is an ascending chain of k-ideals of R all of which contain I. Since the latter
chain must eventually become stationary, so must the former by Lemma 2.13.

(ii) This can be proved in a very similar manner to the way in which (i)
was proved above, and we omit it.

Theorem 2.16. Let I be a Q-ideal of a semiring R. Then the following

hold:

(i) If both I and R/I are Noetherian, then R is Noetherian.

(ii) If both I and R/I are Artinian, then R is Artinian.
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Proof. (i) Let

J1 ⊆ J2 ⊆ ... ⊆ Jn ⊆ Jn+1 ⊆ · · ·

be an ascending chain of k-ideals of R. Then Lemma 2.12 gives

J1 ∩ I ⊆ J2 ∩ I ⊆ · · · ⊆ Jn ∩ I ⊆ Jn+1 ∩ I ⊆ · · ·

is an ascending chain of k-ideals of I, and so there is a positive integer s such
that Js ∩ I = Js+i ∩ I for all positive integer i. By Lemma 2.13,

(J1 + I)/I ⊆ (J2 + I)/I ⊆ · · · ⊆ (Jn + I)/I ⊆ (Jn+1 + I)/I ⊆ · · ·

is a chain of k-ideals of R/I. Thus there exists a positive integer t such that
(Jt +I)/I = (Jt+i +I)/I for all positive integer i, so that I +Jt = I +Jt+i for
all i. Let u = max{s, t}. We show that , for each positive integer i, Ju = Ju+i.
Since the inclusion Ju ⊆ Ju+i is trivial, we will prove the reverse inclusion.
Let x ∈ Ju+i. Since x ∈ I + Ju+i = I + Ju, we must have x = a + b for some
a ∈ I and b ∈ Ju ⊆ Ju+i. Hence a ∈ Ju+i since it is k-ideal. It follows that
a ∈ I ∩Ju+i = I ∩Ju; hence both a and b belong to Ju and x ∈ Ju, as needed.

(ii) This proof is similar to that in the case (i) and we omit it.
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