ON COMMUTATIVITY OF σ-PRIME RINGS

L. Oukhtite and S. Salhi
Université Moulay Ismaïl and Université Sidi Mohamed Ben Abdellah, Maroc

Abstract

Let R be a 2 -torsion free σ-prime ring having a σ-square closed Lie ideal U and an automorphism T centralizing on U. We prove that if there exists u_{0} in $S a_{\sigma}(R)$ with $R u_{0} \subset U$ and if T commutes with σ on U, then U is contained in the center of R. This result is then applied to generalize the result of J. Mayne for centralizing automorphisms to σ-prime rings. Finally, for a 2 -torsion free σ-prime ring possessing a nonzero derivation, we give suitable conditions under which the ring must be commutative.

1. Introduction

A linear mapping T from a ring to itself is called centralizing on a subset S of the ring if $[x, T(x)]$ is in the center of the ring for every x in S. In particular, if T satisfies $[x, T(x)]=0$ for all x in S then T is called commuting on S. In [6] Posner showed that if a prime ring has a nontrivial derivation which is centralizing on the entire ring, then the ring must be commutative. In [2] the same result is proved for a prime ring with a nontrivial centralizing automorphism. A number of authors have generalized these results by considering mappings which are only assumed to be centralizing on an appropriate ideal of the ring. In [1] Awtar considered centralizing derivations on Lie and Jordan ideals. In the Jordan case, he proved that if a prime ring of characteristic not two has a nontrivial derivation which is centralizing on a Jordan ideal, then the ideal must be contained in the center of the ring. This result is extended in [3] where it is shown that if R is any prime ring with a nontrivial centralizing automorphism or derivation on a nonzero ideal or (quadratic) Jordan ideal,

[^0]then R is commutative. For prime rings Mayne, in [4], also showed that a nontrivial automorphism which is centralizing on a Lie ideal implies that the ideal is contained in the center if the ring is not of characteristic two. In this paper, the corresponding result for σ-prime rings with σ-square closed Lie ideals is proved, where σ is an involution, Theorem 2.4. An immediate consequence of Theorem 2.4 and the fact that a σ-ideal is a σ-square closed Lie ideal is Theorem 2.5 which extends the result of [3] for centralizing automorphisms to σ-prime rings of characteristic not two. To end this paper, for a 2 -torsion free σ-prime ring having a nonzero derivation we give suitable conditions under which the ring must be commutative, Theorem 3.2 and Theorem 3.3.

Throughout, R will represent an associative ring with center $Z(R)$. We say R is 2 -torsion free if for $x \in R, 2 x=0$ implies $x=0$. As usual the commutator $x y-y x$ will be denoted by $[x, y]$. We shall use basic commutator identities $[x, y z]=y[x, z]+[x, y] z,[x y, z]=x[y, z]+[x, z] y$. An involution σ of a ring R is an anti-automorphism of order 2 (i.e. σ is an additive mapping satisfying $\sigma(x y)=\sigma(y) \sigma(x)$ and $\sigma^{2}(x)=x$ for all $x, y \in R$). If R is equipped with an involution σ, we set $S a_{\sigma}(R):=\{r$ in R such that $\sigma(r)= \pm r\}$. Recall that R is σ-prime if $a R b=a R \sigma(b)=0$ implies that either $a=0$ or $b=0$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all pairs $x, y \in R$. A Lie ideal U of R is called a square closed Lie ideal if $u^{2} \in U$ for all $u \in U$ and a σ-square closed Lie ideal if U is invariant under σ. The fact that $(u+v)^{2} \in U$ together with $[u, v] \in U$ yield $2 u v \in U$ for all $u, v \in U$.

2. Automorphisms centralizing on σ-SQuare closed Lie ideals

Throughout this section R will denote a 2 -torsion free σ-prime ring, where σ is an involution of R.

Lemma 2.1. If T is an homomorphism of R which is centralizing on a square closed Lie ideal U, then T is commuting on U.

Proof. By linearization $[x, T(y)]+[y, T(x)]$ is in $Z(R)$ for all x and y in U. Thus, $\left[x, T\left(x^{2}\right)\right]+\left[x^{2}, T(x)\right]$ in $Z(R)$ and therefore

$$
T(x)[x, T(x)]+[x, T(x)] x+x[x, T(x)]+[x, T(x)] x=2(x+T(x))[x, T(x)]
$$

in $Z(R)$. Since R is 2 -torsion free, then

$$
(x+T(x))[x, T(x)] \text { in } Z(R)
$$

For r in R, we then get

$$
r(x+T(x))[x, T(x)]=(x+T(x))[x, T(x)] r=(x+T(x)) r[x, T(x)]
$$

Hence $[r, x+T(x)][x, T(x)]=0$ for all r in R. In particular,

$$
0=[x, x+T(x)][x, T(x)]=[x, T(x)]^{2}
$$

Since $[x, T(x)]$ in $Z(R)$, then

$$
[x, T(x)] R[x, T(x)]=0
$$

Therefore,

$$
[x, T(x)] R[x, T(x)] \sigma([x, T(x)])=0
$$

and since $[x, T(x)] \sigma([x, T(x)])$ is invariant under σ, the σ-primeness of R yields $[x, T(x)]=0$ or $[x, T(x)] \sigma([x, T(x)])=0$. If $[x, T(x)] \sigma([x, T(x)])=0$ then

$$
[x, T(x)] R \sigma([x, T(x)])=0, \text { because }[x, T(x)] \in Z(R)
$$

and consequently

$$
[x, T(x)] R[x, T(x)]=[x, T(x)] R \sigma([x, T(x)])=0 .
$$

Once again using the σ-primeness of R, we then get $[x, T(x)]=0$ for all x in U, hence T is commuting on U.

From now on assume that T is an automorphism centralizing on a σ square closed Lie ideal U which contains an element u_{0} in $S a_{\sigma}(R)$ such that $R u_{0} \subset U$. Since T is centralizing on U, Lemma 2.1 implies $[x, T(x)]=0$ for all x in U.

Lemma 2.2. If a, b in R are such that $a U b=a U \sigma(b)=0$, then $a=0$ or $b=0$.

Proof. Suppose $a \neq 0$. We have to distinguish two cases:

1) u_{0} in $Z(R)$. Let r in R. From $a r u_{0} b=a r u_{0} \sigma(b)=0$ it follows that

$$
a R u_{0} b=a R u_{0} \sigma(b)=a R \sigma\left(u_{0} b\right)=0
$$

so that $u_{0} b=0$. Since u_{0} is central, then $u_{0} R b=\sigma\left(u_{0}\right) R b=0$ proving $b=0$.
2) $u_{0} \notin Z(R)$. If $a\left[t, u_{0}\right]=0$ for all t in R, then

$$
a\left[t r, u_{0}\right]=a t\left[r, u_{0}\right]=0 \text { so that } a R\left[r, u_{0}\right]=0=a R \sigma\left(\left[r, u_{0}\right]\right)
$$

proving $\left[r, u_{0}\right]=0$ for all r in R which contradicts $u_{0} \notin Z(R)$. Thus there exists t in R such that $a\left[t, u_{0}\right] \neq 0$. From

$$
a\left[t, u_{0}\right] r b=a\left[t, u_{0}\right] r \sigma(b)=0
$$

it follows that

$$
a\left[t, u_{0}\right] R b=a\left[t, u_{0}\right] R \sigma(b)=0
$$

and the σ-primeness of R yields $b=0$.
Lemma 2.3. Suppose that T commutes with σ on U. If x in $U \cap S a_{\sigma}(R)$ satisfies $T(x) \neq x$, then x in $Z(R)$.

Proof. Let x in $U \cap S a_{\sigma}(R)$ with $T(x) \neq x$. From $[t, T(t)]=0$, for all t in U, we conclude $[t, T(y)]=[T(t), y]$ for all t, y in U. In particular $[x, T(2 x y)]=[T(x), 2 x y]$, because $2 x y$ in U. Since R is 2 -torsion free, thus

$$
T(x)[x, T(y)]-x[T(x), y]=0
$$

and therefore

$$
(T(x)-x)[T(x), y]=0 \text { for all } y \text { in } U
$$

For u in U, as $2 u y$ in U and once again using the fact that R is 2-torsion free we obtain

$$
0=(x-T(x))[T(x), u y]=(x-T(x)) u[T(x), y]
$$

Hence

$$
(x-T(x)) U[T(x), y]=(x-T(x)) U \sigma([T(x), y])=0
$$

Applying Lemma 2.2, since $T(x) \neq x$, then $[T(x), y]=0$ for all y in U. Whence

$$
\left[T(x), t r u_{0}\right]=[T(x), t] r u_{0}=0 \quad \text { for all } r, t \text { in } R
$$

Thus $[T(x), t] R u_{0}=0$, which proves $[T(x), t]=0$ so that $T(x)$ in $Z(R)$. Since T is an automorphism then x in $Z(R)$.

Theorem 2.4. Let R be a 2-torsion free σ-prime ring having an automorphism $T \neq 1$ centralizing on a σ-square closed Lie ideal U. If T commutes with σ on U and there exists u_{0} in $S a_{\sigma}(R)$ with $R u_{0} \subset U$, then U is contained in $Z(R)$.

Proof. Suppose that T is identity on U, hence for all t, r in R we then get

$$
T\left(t r u_{0}\right)=t r u_{0}=T(t) T\left(r u_{0}\right)=T(t) r u_{0}
$$

Thus

$$
(T(t)-t) r u_{0}=0 \text { so that }(T(t)-t) R u_{0}=0
$$

Since R is σ-prime this yields $T(t)=t$ for all t in R which is impossible. Thus T is nontrivial on U. Since R is 2-torsion free, the fact that $x+\sigma(x)$ and $x-\sigma(x)$ are in $U \cap S a_{\sigma}(R)$ for all x in U assures that T is nontrivial on $U \cap S a_{\sigma}(R)$. Therefore, there must be an element x in $U \cap S a_{\sigma}(R)$ such that $x \neq T(x)$ and x is then in $Z(R)$ by Lemma 2.3. Let $0 \neq y$ be in $U \cap S a_{\sigma}(R)$ and not be in $Z(R)$. Once again using Lemma 2.3, we obtain $T(y)=y$. But then

$$
T(x y)=T(x) y=x y \text { so that }(T(x)-x) y=0
$$

and therefore

$$
(T(x)-x) R y=(T(x)-x) R \sigma(y)=0, \text { because } x \text { in } Z(R)
$$

As R is σ-prime this yields $y=0$. Hence for all y in $U \cap S a_{\sigma}(R), y$ must be in $Z(R)$. Now let x in U. The fact that $x-\sigma(x)$ and $x+\sigma(x)$ are elements in $U \cap S a_{\sigma}(R)$ gives $x-\sigma(x)$ and $x+\sigma(x)$ in $Z(R)$ and thus $2 x$ in $Z(R)$. Consequently, x in $Z(R)$ which proves $U \subset Z(R)$.

In [3] it is proved that if a prime ring has a nontrivial automorphism which centralizes on a nonzero ideal, then the ring is commutative. The purpose of the following theorem is to generalize this result to σ-prime rings with characteristic not two.

Theorem 2.5. Let R be a 2 -torsion free σ-prime ring having an automorphism $T \neq 1$ which commutes with σ on a nonzero σ-ideal J of R. If T is centralizing on J, then R is a commutative ring.

Proof. Since a σ-ideal is a σ-square closed Lie ideal, from Theorem 2.4 it follows that J is contained in $Z(R)$. Now, if $x^{2}=0$ for all $x \in J$, then $(\sigma(x)+x)^{2}=0$. As $\sigma(x)+x$ is invariant under σ, the fact that $(\sigma(x)+$ $x) R(\sigma(x)+x)=0$ together with the σ-primeness of R yield $\sigma(x)=-x$. But $x^{2}=0$ implies $x R x=0$ so that $x=0$ which contradicts $J \neq 0$. Thus there exists an element $x \in J$ such that $x^{2} \neq 0$. For all $r, s \in R$, we have

$$
x^{2} r s=x(x r) s=x r x s=x(r x) s=r x x s=x s r x=x^{2} s r .
$$

Hence $x^{2}(r s-s r)=0$ so that $x^{2} R[r, s]=0$ and similarly $x^{2} R \sigma([r, s])=0$. Since $x^{2} \neq 0$, the σ-primeness of R gives $[r, s]=0$ for all $r, s \in R$, proving the commutativity of R.

3. Derivations in σ-PRIME RINGS

Let R be a 2 -torsion free σ-prime ring and let d be a nonzero derivation on R. Our aim in this section is to give suitable conditions under which the ring R must be commutative. We will make frequent and important uses of the following lemma.

Lemma 3.1 ([5], 3) of Theorem 1). Let I be a nonzero σ-ideal of R. If a, b in R are such that $a I b=0=a I \sigma(b)$, then $a=0$ or $b=0$.

Proof. Suppose $a \neq 0$, there exists some $x \in I$ such that $a x \neq 0$. Indeed, otherwise

$$
a R x=0 \text { and } a R \sigma(x)=0 \text { for all } x \in I
$$

and therefore $a=0$. Since $a I R b=0$ and $a I R \sigma(b)=0$, we then obtain

$$
a x R b=a x R \sigma(b)=0
$$

In view of the σ-primeness of R this yields $b=0$.
Theorem 3.2. Let $0 \neq d$ be a derivation of R and let I be a nonzero σ-ideal of R. If r in $S a_{\sigma}(R)$ satisfies $[d(x), r]=0$ for all x in I, then r in $Z(R)$. Furthermore, if $d(I) \subset Z(R)$, then R is commutative.

Proof. Since $[d(u v), r]=0$ for all u, v in I, it follows that

$$
d(u) v r+u d(v) r-r d(u) v-r u d(v)=0
$$

Using $[d(u), r]=[d(v), r]=0$, we obtain

$$
\begin{equation*}
d(u)[v, r]+[u, r] d(v)=0 \quad \text { for all } u, v \in I \tag{3.1}
\end{equation*}
$$

Replacing v by $v r$ in (3.1), we conclude that $[u, r] \operatorname{Id}(r)=0$. The fact that I is a σ-ideal together with r in $S a_{\sigma}(R)$, give

$$
\sigma([u, r]) I d(r)=[u, r] I d(r)=0
$$

Applying Lemma 3.1, either $d(r)=0$ or $[u, r]=0$. If $d(r) \neq 0$, then $[u, r]=0$ for all u in I. Let t in R, from $[t u, r]=0$ it follows that $[t, r] u=0$. Let $0 \neq x_{0}$ in I, as

$$
[t, r] R x_{0}=[t, r] R \sigma\left(x_{0}\right)=0
$$

then $[t, r]=0$, since R is σ-prime, which proves r in $Z(R)$.
Now if $d(r)=0$, then $d([u, r])=[d(u), r]=0$ and consequently

$$
\begin{equation*}
d([I, r])=0 \tag{3.2}
\end{equation*}
$$

Replace v by $v \omega$ in (3.1), where ω in I, we have

$$
\begin{equation*}
d(u) v[\omega, r]+[u, r] v d(\omega)=0 \tag{3.3}
\end{equation*}
$$

Taking $[\omega, r]$ instead of ω in (3.3) and applying (3.2) we then get

$$
d(u) v[[\omega, r], r]=0 \quad \text { so that } \quad d(u) I[[\omega, r], r]=0=d(u) I \sigma([[\omega, r], r])
$$

whence $d(I)=0$ or $[[\omega, r], r]=0$ for all ω in I, by Lemma 3.1.
If $d(I)=0$, then for any t in R we get $d(t u)=d(t) u=0$ for all u in I. Therefore

$$
d(t) R I=d(t) R \sigma(I)=0
$$

and as $0 \neq I$, then $d(t)=0$ in such a way that $d=0$. Consequently,

$$
\begin{equation*}
[[\omega, r], r]=0 \tag{3.4}
\end{equation*}
$$

Replace ω by ωu in (3.4) we obtain

$$
0=[[\omega u, r], r]=[\omega, r][u, r]+[\omega, r][u, r]
$$

in such a way that $[\omega, r][u, r]=0$, because R is 2 -torsion free. Hence

$$
0=[t \omega, r][u, r]=[t, r] \omega[u, r]
$$

and consequently

$$
[t, r] I[u, r]=0 \text { for all } u \text { in } I
$$

Therefore

$$
[t, r] I[u, r]=[t, r] I \sigma([u, r])=0
$$

once again using Lemma 3.1, we see that $[t, r]=0$ or $[u, r]=0$. If $[t, r]=0$, then r in $Z(R)$. If $[u, r]=0$ for all u in I, then for any $t \in R$

$$
0=[t u, r]=t[u, r]+[t, r] u=[t, r] u
$$

Hence

$$
0=[t, r] I=[t, r] I 1=[t, r] I \sigma(1)
$$

Using Lemma 3.1 we conclude that $[t, r]=0$, which proves that r in $Z(R)$.
Now suppose that $d(I) \subset Z(R)$ and let r in R. From the first part of the theorem we conclude $S a_{\sigma}(R) \subset Z(R)$. Using the fact that

$$
r+\sigma(r) \text { and } r-\sigma(r) \text { are elements of } S a_{\sigma}(R)
$$

we then obtain

$$
r-\sigma(r) \in Z(R) \text { and } r+\sigma(r) \in Z(R)
$$

and hence $2 r$ in $Z(R)$. Since R is 2-torsion free, then r in $Z(R)$ proving the commutativity of R.

Theorem 3.3. Let d be a nonzero derivation of R and let a in $S a_{\sigma}(R)$. If $d([R, a])=0$, then a in $Z(R)$. In particular, if $d(x y)-d(y x)=0$, for all $x, y \in R$, then R is a commutative ring.

Proof. If $d(a)=0$, from our hypothesis, we have for any r in R,

$$
0=d([r, a])=d(r) a+r d(a)-d(a) r-a d(r)=d(r) a-a d(r)=[d(r), a]
$$

Therefore

$$
[d(r), a]=0 \text { for all } r \text { in } R
$$

Applying Theorem 3.2, this yields a in $Z(R)$ and the proof is then complete. Now, assume that $d(a) \neq 0$. For all r in R,

$$
0=d([a r, a])=d(a[r, a])=d(a)[r, a]+a d([r, a])
$$

and so,

$$
\begin{equation*}
d(a)[r, a]=0 \tag{3.5}
\end{equation*}
$$

Taking $r s, s$ in R instead of r in (3.5), we obtain

$$
0=d(a)[r s, a]=d(a) r[s, a]+d(a)[r, a] s
$$

Using (3.5), this yields $d(a) r[s, a]=0$ so that

$$
d(a) R[s, a]=0 \text { for all } s \text { in } R
$$

Since a in $S a_{\sigma}(R)$, then

$$
0=d(a) R[s, a]=d(a) R \sigma([s, a])
$$

and the σ-primeness of R yields $[s, a]=0$ which proves a in $Z(R)$.
Now, assume that $d([x, y])=0$ for all $x, y \in R$. Applying the first part of our theorem, we then get $S a_{\sigma}(R) \subset Z(R)$. For r in R, the fact that

$$
r+\sigma(r) \text { and } r-\sigma(r) \text { are elements of } S a_{\sigma}(R)
$$

yields $2 r$ in $Z(R)$. Since R is 2-torsion free, this yields r in $Z(R)$ which proves that R is a commutative ring.

References

[1] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973), 67-74.
[2] J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113-115.
[3] J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122-126.
[4] J. Mayne, Centralizing automorphisms of Lie ideals in prime rings, Canad. Math. Bull. 35 (1992), 510-514.
[5] L. Oukhtite and S. Salhi, σ-prime rings with a special kind of automorphism, submitted.
[6] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
L. Oukhtite

Université Moulay Ismaïl, Faculté des Sciences et Techniques
Département de Mathématiques
B. P. 509-Boutalamine, Errachidia

Maroc
E-mail: oukhtite@math.net
S. Salhi

Université Sidi Mohamed Ben Abdellah, Faculté des Sciences
Département de Mathématiques et Informatique
B. P. 1796-Atlas, Fès

Maroc
E-mail: salhi@math.net
Received: 20.7.2005.
Revised: 22.10.2005.

[^0]: 2000 Mathematics Subject Classification. 16W10, 16W25, 16W20, 16U80.
 Key words and phrases. Rings with involution, σ-prime rings, centralizing automorphisms, square closed Lie ideals, derivations, commutativity.

