BOUNDED 2-LINEAR OPERATORS ON 2-NORMED SETS

Zofia Lewandowska

Pedagogical University, Poland

ABSTRACT. In this paper properties of bounded 2-linear operators from a 2-normed set into a normed space are considered. The space of these operators is a Banach space and a symmetric 2-normed space. In the third part we will formulate Banach-Steinhaus Theorems for a family of bounded 2-linear operators from a 2-normed set into a Banach space.

1. INTRODUCTION

In [1] S. Gähler introduced the following definition of a 2-normed space:

DEFINITION 1.1. [1] Let X be a real linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real valued function on $X \times X$ satisfying the following four properties:

(G1) ||x, y|| = 0 if and only if the vectors x and y are linearly dependent;

(G2) ||x, y|| = ||y, x||;

(G3) $||x, \alpha y|| = |\alpha| \cdot ||x, y||$ for every real number α ;

(G4) $||x, y + z|| \le ||x, y|| + ||x, z||$ for every $x, y, z \in X$.

The function $\|\cdot, \cdot\|$ will be called a 2-norm on X and the pair $(X, \|\cdot, \cdot\|)$ a linear 2-normed space.

In [4] and [5] we gave a generalization of the Gähler's 2-normed space. Namely a generalized 2-norm need not be symmetric and satisfy the first condition of the above definition.

DEFINITION 1.2. [4] Let X and Y be real linear spaces. Denote by \mathcal{D} a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets

 $Key\ words\ and\ phrases.$ 2-normed set, 2-normed space, bounded 2-linear operator, Banach-Steinhaus theorems.

²⁰⁰⁰ Mathematics Subject Classification. 46A32,47B99.

 $\mathcal{D}_x = \{y \in Y; (x, y) \in \mathcal{D}\}$ and $\mathcal{D}^y = \{x \in X; (x, y) \in \mathcal{D}\}$ are linear subspaces of the space Y and X, respectively.

A function $\|\cdot, \cdot\|: \mathcal{D} \to [0, \infty)$ will be called a generalized 2-norm on \mathcal{D} if it satisfies the following conditions:

- (N1) $||x, \alpha y|| = |\alpha| \cdot ||x, y|| = ||\alpha x, y||$ for any real number α and all $(x, y) \in \mathcal{D}$;
- (N2) $||x, y+z|| \le ||x, y|| + ||x, z||$ for $x \in X, y, z \in Y$ such that $(x, y), (x, z) \in \mathcal{D}$;
- (N3) $||x+y,z|| \le ||x,z|| + ||y,z||$ for $x, y \in X, z \in Y$ such that $(x,z), (y,z) \in \mathcal{D}$.

The set \mathcal{D} is called a 2-normed set.

In particular, if $\mathcal{D} = X \times Y$, the function $\|\cdot, \cdot\|$ will be called a generalized 2-norm on $X \times Y$ and the pair $(X \times Y, \|\cdot, \cdot\|)$ a generalized 2-normed space.

Moreover, if X = Y, then the generalized 2-normed space will be denoted by $(X, \| \cdot, \cdot \|)$.

Assume that the generalized 2-norm satisfies, in addition, the symmetry condition. Then we will define the 2-norm as follows:

DEFINITION 1.3. [4] Let X be a real linear space. Denote by \mathcal{X} a nonempty subset of $X \times X$ with the property $\mathcal{X} = \mathcal{X}^{-1}$ and such that the set $\mathcal{X}^y = \{x \in X; (x, y) \in \mathcal{X}\}$ is a linear subspace of X, for all $y \in X$.

A function $\|\cdot, \cdot\| : \mathcal{X} \to [0, \infty)$ satisfying the following conditions:

(S1) ||x, y|| = ||y, x|| for all $(x, y) \in \mathcal{X}$;

(S2) $||x, \alpha y|| = |\alpha| \cdot ||x, y||$ for any real number α and all $(x, y) \in \mathcal{X}$;

(S3) $||x, y + z|| \le ||x, y|| + ||x, z||$ for $x, y, z \in X$ such that $(x, y), (x, z) \in \mathcal{X}$;

will be called a generalized symmetric 2-norm on \mathcal{X} . The set \mathcal{X} is called a symmetric 2-normed set. In particular, if $\mathcal{X} = X \times X$, the function $\|\cdot, \cdot\|$ will be called a generalized symmetric 2-norm on X and the pair $(X, \|\cdot, \cdot\|)$ a generalized symmetric 2-normed space.

In [4], [5], [6], [7] we considered properties of generalized 2-normed spaces and 2-normed sets.

In what follows we shall use the following results:

THEOREM 1.4. [4] Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. Then the family \mathcal{B} of all sets defined by

$$\bigcap_{i=1}^{n} \{ x \in X; \ \|x, y_i\| < \varepsilon \},\$$

where $y_1, y_2, ..., y_n \in Y, n \in N$ and $\varepsilon > 0$, forms a complete system of neighborhoods of zero for a locally convex topology in X.

We will denote it by the symbol $\mathcal{T}(X, Y)$. Similarly, we have the preceding theorem for a topology $\mathcal{T}(Y, X)$ in the space Y. In the case when X = Y we will write: $\mathcal{T}_1(X) = \mathcal{T}(X, Y)$ and $\mathcal{T}_2(X) = \mathcal{T}(Y, X)$.

Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space and let Σ be a directed set. A net $\{x_{\sigma}; \sigma \in \Sigma\}$ is convergent to $x_o \in X$ in $(X, \mathcal{T}(X, Y))$ if and only if for all $y \in Y$ and $\varepsilon > 0$ there exists $\sigma_o \in \Sigma$ such that $\|x_{\sigma} - x_o, y\| < \varepsilon$ for all $\sigma \geq \sigma_o$. Similarly we have the notion of convergence in $(Y, \mathcal{T}(Y, X))$.

A sequence $\{x_n; n \in N\} \subset X$ is a Cauchy sequence in $(X, \mathcal{T}(X, Y))$ if and only if for every $y \in Y$ and $\varepsilon > 0$ there exists a number $n_o \in N$ such that inequality $n, m > n_o$ implies $||x_n - x_m, y|| < \varepsilon$. A space $(X, \mathcal{T}(X, Y))$ is called sequentially complete if every Cauchy sequence in $(X, \mathcal{T}(X, Y))$ is convergent in this space. Analogously we have the notion of sequential completeness for the space $(Y, \mathcal{T}(Y, X))$.

EXAMPLE 1.5. [4] Let X be a real linear space which have two norms (seminorms) $\|\cdot\|_1, \|\cdot\|_2$. Then $(X, \|\cdot, \cdot\|)$ is a generalized 2-normed space with the 2-norm defined by the formula

$$||x, y|| = ||x||_1 \cdot ||y||_2$$
 for each $x, y \in X$

Let us remark that topologies generated by these norms $\|\cdot\|_1$ and $\|\cdot\|_2$ coincide with the topologies $\mathcal{T}_1(X)$ and $\mathcal{T}_2(X)$ given in Theorem 1.4.

EXAMPLE 1.6. In Example 1.5 we can get $\|\cdot\|_1 = \|\cdot\|_2$. Then $(X, \|\cdot, \cdot\|)$ is a generalized symmetric 2-normed space with the symmetric 2-norm defined by the formula

(1.1)
$$||x,y|| = ||x|| \cdot ||y||$$
 for each $x, y \in X$.

Let us remark that a symmetric 2-normed space need not be a 2-normed space in the sense of Gähler. For instance given in Example 1.6 $x \neq \theta, y = kx, k \neq 0$ we obtain

$$||x, y|| = ||x, kx|| = |k| \cdot ||x, x|| = |k| \cdot ||x||^2 > 0,$$

but in spite of this x and y are linearly dependent. The 2-normed space from Example 1.6 is not a 2-normed space in the sense of Definition 1.1.

It is easy to see that if $(X, \| \cdot \|)$ is a normed space, \mathcal{T}_1 -the topology generated by this norm and \mathcal{T}_2 -the topology generated by the 2-norm defined by the formula (1.1), then $\mathcal{T}_1 = \mathcal{T}_2$. Moreover a sequence $\{x_n; n \in N\}$ is a Cauchy sequence in $(X, \| \cdot \|)$ if and only if it is a Cauchy sequence in $(X, \| \cdot , \cdot \|)$ with the 2-norm defined in Example 1.6.

Thus the following theorem follows.

THEOREM 1.7. A normed space $(X, \|\cdot\|)$ is a Banach space if and only if the symmetric 2-normed space with the 2-norm defined by (1.1) is sequentially complete.

Z. LEWANDOWSKA

2. The space of all bounded 2-linear operators

In [8] A. G. White defined and considered the properties of bounded 2linear functionals from $B \times B$, where B denotes a 2-normed space in the sense of Gähler. He proved that the set of all bounded 2-linear functionals is a Banach space.

S. S. Kim, Y. J. Cho and A. G. White in [3] and A. Khan in [2] gave the properties of bounded operators from $X \times X$ with values in a normed space Y, where X denotes a 2-normed space in the sense of Gähler. They showed that the set $B(X \times X, Y)$ of all bounded operators from $X \times X$ into Y is a seminormed space. Moreover, if Y is a Banach space, then $B(X \times X, Y)$ is a complete space.

In this section we will consider bounded 2-linear operators defined on a 2-normed set into a normed space. We will show, like in the above mentioned papers, that the space of these operators is a Banach space. We will prove that under some additional conditions it is a symmetric 2-normed space.

Let us consider a real linear space X. Let $\mathcal{D} \subset X \times X$ be a 2-normed set, Y a normed space.

DEFINITION 2.1. An operator $F: \mathcal{D} \to Y$ is said to be 2-linear if it satisfies the following conditions:

- 1. F(a+c,b+d) = F(a,b) + F(a,d) + F(c,b) + F(c,d) for $a, b, c, d \in X$ such that $a, c \in \mathcal{D}^{b} \cap \mathcal{D}^{d}$.
- 2. $F(\alpha a, \beta b) = \alpha \cdot \beta \cdot F(a, b)$ for $\alpha, \beta \in \mathbb{R}, (a, b) \in \mathcal{D}$.

DEFINITION 2.2. A 2-normed operator F is said to be bounded if there is a positive number K such that

 $||F(a,b)|| \le K \cdot ||a,b|| \text{ for all } (a,b) \in \mathcal{D}.$

DEFINITION 2.3. If F is a bounded operator, then the following number

$$||F|| = \inf\{K > 0; ||F(a, b)|| \le K \cdot ||a, b|| \text{ for } (a, b) \in \mathcal{D}\}$$

will be called the norm of the 2-linear operator F.

EXAMPLE 2.4. Let $(X, (\cdot | \cdot))$ be a real inner product space. Then X is a generalized symmetric 2-normed space with the 2-norm defined as follows:

 $||x, y|| = |(x \mid y)| \text{ for all } x, y \in X.$

This 2-norm generates a weak topology in the Hilbert space (see Example 1.5 in [4]). An operator $F: X \times X \to \mathbb{R}$ defined by the formula

$$F(a,b) = (a \mid b) \text{ for } a, b \in X$$

is 2-linear and bounded. Moreover ||F|| = 1.

In the next theorem we will give properties of the above mentioned notions.

THEOREM 2.5. Let F be a bounded 2-linear operator. Then:

(a) ||F|| ≤ K for K ∈ P^(F) = {K' > 0; ||F(a,b)|| ≤ K' · ||a,b|| for (a,b) ∈ D};
(b) ||F(a,b)|| ≤ ||F|| · ||a,b|| for each (a,b) ∈ D;
(c)

$$\begin{split} \|F\| &= \sup\{\|F(a,b)\|; \ (a,b) \in \mathcal{D}, \|a,b\| = 1\} \\ &= \sup\{\|F(a,b)\|; \ (a,b) \in \mathcal{D}, \|a,b\| \le 1\} \\ &= \sup\left\{\frac{\|F(a,b)\|}{\|a,b\|}; \ (a,b) \in \mathcal{D}, \|a,b\| \neq 0\right\}. \end{split}$$

PROOF. The condition (a) follows from the Definition 2.3.

(b) Because the operator F is bounded, then there exists K > 0 such that

$$||F(a,b)|| \le K \cdot ||a,b|| \text{ for } (a,b) \in \mathcal{D}.$$

Thus $\|F(a,b)\| \leq \inf_{K' \in \mathcal{P}^{(F)}} K' \cdot \|a,b\|$, i.e.

$$\|F(a,b)\| \leq \|F\| \cdot \|a,b\|.$$
(c) By (b), $\sup\left\{\frac{\|F(a,b)\|}{\|a,b\|}; (a,b) \in \mathcal{D}, \|a,b\| \neq 0\right\} \leq \|F\|.$
Let $A = \sup\{\|F(a,b)\|; (a,b) \in \mathcal{D}, \|a,b\| = 1\}.$ Then

$$A = \sup\left\{\frac{\|F(a,b)\|}{\|a,b\|}; (a,b) \in \mathcal{D}, \|a,b\| = 1\right\}$$
(2.1)

$$\leq \sup\left\{\frac{\|F(a,b)\|}{\|a,b\|}; (a,b) \in \mathcal{D}, \|a,b\| \leq 1\right\}$$

$$\leq \sup\left\{\frac{\|F(a,b)\|}{\|a,b\|}; (a,b) \in \mathcal{D}, \|a,b\| \neq 0\right\}$$

$$\leq \|F\|.$$

Moreover

(2.2)
$$A \le \sup\{\|F(a,b)\|; (a,b) \in \mathcal{D}, \|a,b\| \le 1\}$$

Let $(a,b) \in \mathcal{D}$ be such that $||a,b|| \neq 0$. Because $\left\|\frac{a}{||a,b||}, b\right\| = 1$, then $\left\|F\left(\frac{a}{||a,b||}, b\right)\right\| \leq A$. And further by virtue of the equalities $\left\|F\left(\frac{a}{||a,b||}, b\right)\right\| = \left\|\frac{1}{||a,b||} \cdot F(a,b)\right\| = \frac{1}{||a,b||} \cdot ||F(a,b)||$

we obtain $||F(a,b)|| \le A \cdot ||a,b||$. On the other hand, if $(a,b) \in \mathcal{D}$ and ||a,b|| = 0, then $0 \le ||F(a,b)|| \le ||F|| \cdot ||a,b|| = 0$, i.e. $||F(a,b)|| = 0 = A \cdot ||a,b||$.

Consequently $||F(a,b)|| \leq A \cdot ||a,b||$ for all $(a,b) \in \mathcal{D}$, which means that $A \in \mathcal{P}^{(F)}$. By virtue of (a) we obtain

 $\|F\| \le A.$

The conditions (2.1) and (2.3) imply

$$||F|| = \sup\{||F(a,b)||; (a,b) \in \mathcal{D}, ||a,b|| = 1\}$$

= $\sup\left\{\frac{||F(a,b)||}{||a,b||}; (a,b) \in \mathcal{D}, ||a,b|| \neq 0\right\}.$

From (b) we have $\sup\{||F(a,b)||; (a,b) \in \mathcal{D}, ||a,b|| \le 1\} \le ||F||$, which with (2.2) gives the equality $||F|| = \sup\{||F(a,b)||; (a,b) \in \mathcal{D}, ||a,b|| \le 1\}$, and the proof is completed.

DEFINITION 2.6. Let $\mathcal{D} \subset X \times X$ be a 2-normed set and Y a normed space. Denote by $L_2(\mathcal{D}, Y)$ the set of all bounded 2-linear operators from \mathcal{D} into Y.

In particular, we will write $L_2(X,Y)$, if X is a generalized 2-normed space and $\mathcal{D} = X \times X$.

Let $F, G \in L_2(\mathcal{D}, Y)$ and define 1. (F+G)(a,b) = F(a,b) + G(a,b) for all $(a,b) \in \mathcal{D}$; 2. $(\alpha \cdot F)(a,b) = \alpha \cdot F(a,b)$ for $\alpha \in \mathbb{R}, (a,b) \in \mathcal{D}$.

THEOREM 2.7. If \mathcal{D} is a 2-normed set and Y a normed space, then the set $L_2(\mathcal{D}, Y)$ is a normed space with the norm $\|\cdot\|$ defined in Definition 2.3.

PROOF. Let us take $F, G \in L_2(\mathcal{D}, Y), \alpha, \beta \in \mathcal{R}$ and $a, b, c, d \in X$ such that $a, c \in \mathcal{D}^b \cap \mathcal{D}^d$. For F + G we obtain:

(2.4)
$$(F+G)(a+c,b+d) = = (F+G)(a,b) + (F+G)(a,d) + (F+G)(c,b) + (F+G)(c,d);$$

(2.5)
$$(F+G)(\alpha a,\beta b) = \alpha\beta \cdot (F+G)(a,b)$$

Moreover by virtue of the condition (b) of Theorem 2.5 we have

$$\begin{aligned} \|(F+G)(a,b)\| &= \|F(a,b) + G(a,b)\| \\ &\leq \|F(a,b)\| + \|G(a,b)\| \le \|F\| \cdot \|a,b\| + \|G\| \cdot \|a,b\| \\ &= (\|F\| + \|G\|) \cdot \|a,b\|. \end{aligned}$$

Thus $F + G \in L_2(\mathcal{D}, Y)$.

Analogously we show that $\alpha \cdot F \in L_2(\mathcal{D}, Y)$ and

(2.7)
$$\|(\alpha \cdot F)(a,b)\| = \|\alpha \cdot F(a,b)\| \le |\alpha| \cdot \|F\| \cdot \|a,b\|.$$

Moreover it is easy to prove that the set $L_2(\mathcal{D}, Y)$ is a real linear space.

Now we will show that the function $\| \cdot \| \colon L_2(\mathcal{D}, Y) \to [0, \infty)$ given in Definition 2.3 satisfies all conditions of a norm.

If ||F|| = 0, then ||F(a,b)|| = 0 for all $(a,b) \in \mathcal{D}$. Thus F(a,b) = 0 for every $(a,b) \in \mathcal{D}$. Conversely, if F is a zero operator, then

$$||F|| = \sup\{||F(a,b)||; (a,b) \in \mathcal{D}, ||a,b|| = 1\} = 0.$$

As a consequence we have the condition

$$||F|| = 0$$
 if and only if $F = 0$.

From (2.7) we have $|\alpha| \cdot ||F|| \in \mathcal{P}^{(\alpha F)}$, which with Theorem 2.5 (a) implies the inequality $||\alpha \cdot F|| \le |\alpha| \cdot ||F||$. Assume $\alpha \ne 0$. Then

$$\|F\| = \left\|\frac{1}{\alpha} \cdot \alpha \cdot F\right\| \leq \frac{1}{\mid \alpha \mid} \cdot \ \|\alpha F\|,$$

i.e. $|\alpha| \cdot ||F|| \le ||\alpha \cdot F||$; thus $|\alpha| \cdot ||F|| = ||\alpha \cdot F||$.

For $\alpha = 0$ the equality $\|\alpha \cdot F\| = |\alpha| \cdot \|F\|$ is obvious. Therefore $\|\alpha \cdot F\| = |\alpha| \cdot \|F\|$ for $\alpha \in \mathbb{R}$.

The condition (2.6) implies $||F|| + ||G|| \in \mathcal{P}^{(F+G)}$. Hence and from Theorem 2.5(a) we have $||F + G|| \le ||F|| + ||G||$. This completes the proof.

Π

THEOREM 2.8. If \mathcal{D} is a 2-normed set and Y is a Banach space, then $L_2(\mathcal{D}, Y)$ is a Banach space.

PROOF. According to Theorem 2.7, $L_2(\mathcal{D}, Y)$ is a normed space. Let $\{F_n; n \in N\}$ be a Cauchy sequence in $L_2(\mathcal{D}, Y)$. Then

$$\lim_{n,m\to\infty} \|F_n - F_m\| = 0$$

and for every $(a, b) \in \mathcal{D}$ the following inequality

$$||F_n(a,b) - F_m(a,b)|| = ||(F_n - F_m)(a,b)|| \le ||F_n - F_m|| \cdot ||a,b||$$

is true. Thus $\{F_n(a, b); n \in N\}$ is a Cauchy sequence in Y for every $(a, b) \in \mathcal{D}$. Because Y is complete, the sequence $\{F_n(a, b); n \in N\}$ is convergent for every $(a, b) \in \mathcal{D}$. Let us denote

$$F(a,b) = \lim_{n \to \infty} F_n(a,b).$$

We shall show that $F \in L_2(\mathcal{D}, Y)$.

For $a, b, c, d \in X$ such that $a, c \in \mathcal{D}^b \cap \mathcal{D}^d$ we have

$$F(a+c,b+d) = \lim_{n \to \infty} F_n(a+c,b+d)$$

=
$$\lim_{n \to \infty} F_n(a,b) + \lim_{n \to \infty} F_n(a,d) + \lim_{n \to \infty} F_n(c,b) + \lim_{n \to \infty} F_n(c,d)$$

=
$$F(a,b) + F(a,d) + F(c,b) + F(c,d).$$

Moreover for $\alpha, \beta \in \mathbb{R}$ and $(a, b) \in \mathcal{D}$ we have:

$$F(\alpha a, \beta b) = \lim_{n \to \infty} F_n(\alpha a, \beta b)$$

= $\lim_{n \to \infty} \alpha \beta \cdot F_n(a, b)$
= $\alpha \beta \cdot \lim_{n \to \infty} F_n(a, b)$
= $\alpha \beta \cdot F(a, b).$

Thus F is a 2-linear operator.

The inequality

$$| ||F_n|| - ||F_m|| | \le ||F_n - F_m||$$

implies that $\{||F_n||; n \in N\}$ is a Cauchy sequence in \mathbb{R} . As a consequence this sequence is bounded, that is, there exists K > 0 such that $||F_n|| \leq K$ for all $n \in N$. Using this result we get

$$||F(a,b)|| \le ||F_n(a,b)|| + ||F(a,b) - F_n(a,b)||$$

$$\le ||F_n|| \cdot ||a,b|| + ||F(a,b) - F_n(a,b)||$$

$$\le K \cdot ||a,b|| + ||F_n(a,b) - F(a,b)||.$$

Letting $n \to \infty$ we obtain $||F(a,b)|| \le K \cdot ||a,b||$ for every $(a,b) \in \mathcal{D}$, which means that F is bounded. So we have shown that $F \in L_2(\mathcal{D}, Y)$.

Now let us suppose that $(a,b) \in \mathcal{D}$ and $||a,b|| \neq 0$. Let $\varepsilon > 0$. Because $\{F_n; n \in N\}$ is a Cauchy sequence, there exists $n_o \in N$ such that

$$||F_n - F_m|| < \frac{\varepsilon}{4}$$
 for all $n, m \ge n_o$

Thus $||F_n(a,b) - F_m(a,b)|| \le ||F_n - F_m|| \cdot ||a,b|| < \frac{\varepsilon}{4} \cdot ||a,b||$ for all $n, m \ge n_o$. The equality

$$F(a,b) = \lim_{n \to \infty} F_n(a,b)$$

implies that there exists $n_1 = n_1(a, b) \ge n_o$ such that

$$\|F_{n_1}(a,b) - F(a,b)\| < \frac{\varepsilon}{4} \cdot \|a,b\|$$

As a consequence we obtain

$$\|F_n(a,b) - F(a,b)\| \le \|F_n(a,b) - F_{n_1}(a,b)\| + \|F_{n_1}(a,b) - F(a,b)\| < \frac{\varepsilon}{2} \cdot \|a,b\|$$

for $n \geq n_o$, $(a,b) \in \mathcal{D}$ and $||a,b|| \neq 0$. If ||a,b|| = 0, then $F_n(a,b) = 0 = F(a,b)$, so $||F_n(a,b) - F(a,b)|| = \frac{\varepsilon}{2} \cdot ||a,b||$. Thus $||F_n(a,b) - F(a,b)|| \leq \frac{\varepsilon}{2} \cdot ||a,b||$ for all $n \geq n_o$, $(a,b) \in \mathcal{D}$, i.e.

$$\frac{\varepsilon}{2} \in \mathcal{P}^{(F_n - F)} \quad \text{for } n \ge n_o.$$

Therefore $||F_n - F|| \leq \frac{\varepsilon}{2} < \varepsilon$ for $n \geq n_o$, which means that the sequence $\{F_n; n \in N\}$ is convergent to F in $L_2(\mathcal{D}, Y)$. Hence we have shown that $L_2(\mathcal{D}, Y)$ is a Banach space, which finishes the proof.

From Theorem 2.8 and Theorem 1.7 the following corollary follows.

COROLLARY 2.9. If \mathcal{X} is a symmetric 2-normed set and Y is a Banach space, then $L_2(\mathcal{X}, Y)$ is a symmetric sequentially complete 2-normed space with the 2-norm defined as follows:

$$||F,G|| = ||F|| \cdot ||G||$$
 for $F, G \in L_2(\mathcal{X}, Y)$.

3. BANACH-STEINHAUS THEOREMS FOR BOUNDED 2-LINEAR OPERATORS

In this section we will consider properties of sequences of operators from $L_2(\mathcal{D}, Y)$. We will formulate Banach-Steinhaus Theorems for a family of these operators.

PROPOSITION 3.1. Let \mathcal{D} be a 2-normed set, Y a normed space and $\{F_n; n \in N\} \subset L_2(\mathcal{D}, Y)$. If the sequence of norms $\{\|F_n\|; n \in N\}$ is bounded, then for each $(x, y) \in \mathcal{D}$ the sequence of norms $\{\|F_n(x, y)\|; n \in N\}$ is bounded.

PROOF. From the assumption it follows that there exists a positive number M such that $||F_n|| \leq M$ for each $n \in N$. Thus for $(x, y) \in \mathcal{D}$ we obtain

$$\|F_n(x,y)\| \le \|F_n\| \cdot \|x,y\| \le M \cdot \|x,y\| \text{ for each } n \in N.$$

THEOREM 3.2. Let X be a generalized 2-normed space and Y a normed space. If $\{F_n; n \in N\} \subset L_2(X, Y)$ is pointwise convergent to F and the sequence of norms $\{||F_n||; n \in N\}$ is bounded, then $F \in L_2(X, Y)$.

PROOF. For all $x, y \in X$ we have

$$F(x,y) = \lim F_n(x,y).$$

Thus the operator F is a 2-linear operator.

Because the sequence of norms $\{ \|F_n\|; n \in N \}$ is bounded, then there exists M > 0 such that $\|F_n\| \leq M$ for all $n \in N$. Thus $\|F_n(x,y)\| \leq \|F_n\| \cdot \|x,y\| \leq M \cdot \|x,y\|$. Let us take $x, y \in X$. Then

(3.1)
$$\|F(x,y)\| \le \|F_n(x,y) - F(x,y)\| + \|F_n(x,y)\| \le \\ \le \|F_n(x,y) - F(x,y)\| + M \cdot \|x,y\|.$$

By letting $n \to \infty$ we obtain $||F(x, y)|| \le M \cdot ||x, y||$ for each $x, y \in X$. This gives that F is bounded. As a consequence we have shown that $F \in L_2(X, Y)$.

THEOREM 3.3. Let Y be a Banach space, $(X, \| \cdot, \cdot \|)$ a generalized 2normed space and let A be a linearly dense set in the spaces $(X, T_1(X))$ and $(X, T_2(X))$. If a sequence $\{F_n; n \in N\} \subset L_2(X, Y)$ is pointwise convergent on the set A and the sequence of norms $\{\|F_n\|; n \in N\}$ is bounded, then the sequence $\{F_n(x, y); n \in N\}$ is convergent in Y for each $x, y \in X$.

PROOF. Let X_o be the linear subspace of X generated by A. We will consider X_o as a 2-normed space with the same 2-norm induced by that of X. Let $x, y \in X_o$. Then $x = a_1x_1 + \cdots + a_kx_k, y = b_1y_1 + \cdots + b_ty_t$, where $a_i, b_j \in \mathbb{R}$, $x_i, y_j \in A, i = 1, 2, \ldots, k, j = 1, 2, \ldots, t; k, t \in N$, and

$$F_n(x,y) = \sum_{i=1}^k \sum_{j=1}^t a_i b_j \cdot F_n(x_i, y_j)$$

Because the sequence $\{F_n(x_i, y_j); n \in N\}$ is convergent for all $x_i, y_j \in A$, then $\{F_n(x, y); n \in N\}$ is convergent in X_o .

Let $||F_n|| \leq M$ for every $n \in N$. Let us take a number $\varepsilon > 0$ and $x, y \in X$. Since X_o is a dense set in $(X, \mathcal{T}_1(X))$ we can choose $x_o \in X_o$ such that

$$\|x - x_o, y\| < \frac{\varepsilon}{6M}$$

Moreover there exists $y_o \in X_o$ with the property

$$||x_o, y - y_o|| < \frac{\varepsilon}{6M},$$

because X_o is also a dense set in $(X, \mathcal{T}_2(X))$.

The sequence $\{F_n(x_o, y_o); n \in N\}$ is convergent, so it is a Cauchy sequence in Y. Therefore there exists a number $n_o \in N$ such that

$$||F_n(x_o, y_o) - F_m(x_o, y_o)|| < \frac{\varepsilon}{3}$$
 for each $n, m \ge n_o$.

As a consequence we obtain

$$\begin{split} \|F_n(x,y) - F_m(x,y)\| &= \|F_n(x - x_o + x_o, y) - F_m(x - x_o + x_o, y)\| \\ &\leq \|F_n(x - x_o, y)\| + \|F_m(x - x_o, y)\| \\ &+ \|F_n(x_o, y) - F_m(x_o, y)\| \\ &\leq \|F_n(x - x_o, y)\| + \|F_m(x - x_o, y)\| \\ &+ \|F_n(x_o, y - y_o)\| + \|F_m(x_o, y - y_o)\| \\ &+ \|F_n(x_o, y_o) - F_m(x_o, y_o)\| \\ &\leq \|F_n\| \cdot \|x - x_o, y\| + \|F_m\| \cdot \|x - x_o, y\| \\ &+ \|F_n\| \cdot \|x_o, y - y_o\| + \|F_m\| \cdot \|x_o, y - y_o\| + \frac{\varepsilon}{3} \\ &\leq 2M \cdot \|x - x_o, y\| + 2M \cdot \|x_o, y - y_o\| + \frac{\varepsilon}{3} < \varepsilon \end{split}$$

for $n, m \ge n_o$. Hence we have shown that $\{F_n(x, y); n \in N\}$ is a Cauchy sequence in Y for each $x, y \in X$. Because Y is complete, then the sequence $\{F_n(x, y); n \in N\}$ is convergent in Y, which finishes the proof.

THEOREM 3.4. Let $(X, \| \cdot , \cdot \|)$ be a generalized 2-normed space and Y a Banach space. If a sequence $\{F_n; n \in N\} \subset L_2(X, Y)$ is pointwise convergent to $F \in L_2(X, Y)$ on a linearly dense set A in the spaces $(X, \mathcal{T}_1(X))$ and $(X, \mathcal{T}_2(X))$ and the sequence of norms $\{\|F_n\|; n \in N\}$ is bounded, then $\{F_n; n \in N\}$ is pointwise convergent to F and the inequality $\|F\| \leq \sup_n \|F_n\|$ holds.

PROOF. It follows from Theorem 3.3 that the sequence $\{F_n(x, y); n \in N\}$ is convergent in Y for each $x, y \in X$. Let us denote

$$H(x,y) = \lim_{n \to \infty} F_n(x,y)$$
 for every $x, y \in X$.

We must show that H(x, y) = F(x, y) for all $x, y \in X$. Using Theorem 3.2 we see that $H \in L_2(X, Y)$. From assumption it follows that H(x, y) = F(x, y)for all $x, y \in A$, i.e. (H - F)(x, y) = 0 for $x, y \in A$. Because $L_2(X, Y)$ is a linear space, then $H - F \in L_2(X, Y)$. As a consequence H - F is an 2-linear operator and (H - F)(x, y) = 0 for $x, y \in X_o$, where X_o denote the set of all linear combinations of elements from A. Moreover H - F is bounded, thus there exists K > 0 such that $||(H - F)(x, y)|| \le K \cdot ||x, y||$ for every $x, y \in X$.

Let $\varepsilon > 0, x, y \in X$. Since the set X_o is dense in $(X, \mathcal{T}_1(X))$ we can choose $x_o \in X_o$ such that

$$\|x-x_o,y\| < \frac{\varepsilon}{2K}.$$

There exists $y_o \in X_o$ with the property

$$\|x_o, y - y_o\| < \frac{\varepsilon}{2K}$$

because X_o is also dense in $(X, \mathcal{T}_2(X))$. Then we have

$$0 \le \|(H - F)(x, y)\| = \|(H - F)(x - x_o + x_o, y)\|$$

= $\|(H - F)(x - x_o, y) + (H - F)(x_o, y)\|$
= $\|(H - F)(x - x_o, y) + (H - F)(x_o, y - y_o + y_o)\|$
= $\|(H - F)(x - x_o, y) + (H - F)(x_o, y - y_o) + (H - F)(x_o, y_o)\|$
= $\|(H - F)(x - x_o, y) + (H - F)(x_o, y - y_o)\|$
 $\le \|(H - F)(x - x_o, y)\| + \|(H - F)(x_o, y - y_o)\|$
 $\le K \cdot \|x - x_o, y\| + K \cdot \|x_o, y - y_o\| < \varepsilon.$

This gives ||(H - F)(x, y)|| = 0 for each $x, y \in X$, i.e. H(x, y) = F(x, y) for every $x, y \in X$.

Let us denote $M = \sup_{n} ||F_n||$. Then for every $n \in N$ and $x, y \in X$ such that $||x, y|| \le 1$ we have

$$||F_n(x,y)|| \le ||F_n|| \cdot ||x,y|| \le M.$$

Thus

$$||F(x,y)|| = ||F(x,y) - F_n(x,y) + F_n(x,y)||$$

$$\leq ||F(x,y) - F_n(x,y)|| + ||F_n(x,y)||$$

$$\leq ||F(x,y) - F_n(x,y)|| + M.$$

By letting $n \to \infty$ we obtain $||F(x, y)|| \le M$ for $x, y \in X$ such that $||x, y|| \le 1$. This implies $||F|| = \sup\{||F(x, y)||; x, y \in X, ||x, y|| \le 1\} \le M$, which finishes the proof.

References

- [1] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1964), 1-43.
- [2] A. Khan, Lipschitz 2-operators, Math. Seminar Notes, Kobe Univ. 10 (1982), 367–372.
- [3] S.S. Kim, Y.J. Cho and A. White, *Linear operators on linear 2-normed spaces*, Glasnik Mat. 27(47) (1992), 63–70.
- [4] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sc. Math. Roumanie 42 (1999), 353–368.
- [5] Z. Lewandowska, Generalized 2-normed spaces, Słupskie Prace Matematyczno-Fizyczne 1 (2001), 33–40.
- [6] Z. Lewandowska, On 2-normed sets, Glasnik Mat. 38 (2003), 99-110.
- [7] Z. Lewandowska, Banach-Steinhaus Theorems for bounded linear operators with values in a generalized 2-normed space, Glasnik Mat. 38 (2003), 329–340.
- [8] A. White, 2-Banach spaces, Math. Nachr. 42 (1969), 43–60.

Z. Lewandowska Department of Mathematics Pedagogical University Arciszewskiego 22 b Pl-76-200 Slupsk Poland *E-mail*: lewandow@pap.edu.pl & Lewandowscy@rene.com.pl *Received*: 1.10.2003.