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Vol. 39(59)(2004), 303 – 314

BOUNDED 2-LINEAR OPERATORS ON 2-NORMED SETS
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Abstract. In this paper properties of bounded 2-linear operators
from a 2-normed set into a normed space are considered. The space of
these operators is a Banach space and a symmetric 2-normed space. In the
third part we will formulate Banach-Steinhaus Theorems for a family of
bounded 2-linear operators from a 2-normed set into a Banach space.

1. Introduction

In [1] S. Gähler introduced the following definition of a 2-normed space:

Definition 1.1. [1] Let X be a real linear space of dimension greater
than 1 and let ‖ · , · ‖ be a real valued function on X × X satisfying the
following four properties:

(G1) ‖x, y‖ = 0 if and only if the vectors x and y are linearly dependent;
(G2) ‖x, y‖ = ‖y, x‖;
(G3) ‖x, αy‖ =| α | ·‖x, y‖ for every real number α;
(G4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖ for every x, y, z ∈ X.

The function ‖ · , · ‖ will be called a 2-norm on X and the pair (X, ‖ · , · ‖)
a linear 2-normed space.

In [4] and [5] we gave a generalization of the Gähler’s 2-normed space.
Namely a generalized 2-norm need not be symmetric and satisfy the first
condition of the above definition.

Definition 1.2. [4] Let X and Y be real linear spaces. Denote by D
a non-empty subset of X × Y such that for every x ∈ X, y ∈ Y the sets
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Dx = {y ∈ Y ; (x, y) ∈ D} and D y = {x ∈ X ; (x, y) ∈ D} are linear
subspaces of the space Y and X, respectively.

A function ‖ · , · ‖ : D → [0,∞) will be called a generalized 2-norm on D
if it satisfies the following conditions:

(N1) ‖x, αy‖ =| α | ·‖x, y‖ = ‖αx, y‖ for any real number α and all (x, y) ∈
D;

(N2) ‖x, y+z‖ ≤ ‖x, y‖+‖x, z‖ for x ∈ X, y, z ∈ Y such that (x, y), (x, z) ∈
D;

(N3) ‖x+y, z‖ ≤ ‖x, z‖+‖y, z‖ for x, y ∈ X, z ∈ Y such that (x, z), (y, z) ∈
D.

The set D is called a 2-normed set.
In particular, if D = X × Y , the function ‖ · , · ‖ will be called a

generalized 2-norm on X × Y and the pair (X × Y, ‖ · , · ‖) a generalized
2-normed space.

Moreover, if X = Y , then the generalized 2-normed space will be denoted
by (X, ‖ · , · ‖).

Assume that the generalized 2-norm satisfies, in addition, the symmetry
condition. Then we will define the 2-norm as follows:

Definition 1.3. [4] Let X be a real linear space. Denote by X a non-
empty subset of X × X with the property X = X−1 and such that the set
X y = {x ∈ X ; (x, y) ∈ X} is a linear subspace of X, for all y ∈ X.

A function ‖ · , · ‖ : X → [0,∞) satisfying the following conditions:

(S1) ‖x, y‖ = ‖y, x‖ for all (x, y) ∈ X ;
(S2) ‖x, αy‖ =| α | · ‖x, y‖ for any real number α and all (x, y) ∈ X ;
(S3) ‖x, y+ z‖ ≤ ‖x, y‖+ ‖x, z‖ for x, y, z ∈ X such that (x, y), (x, z) ∈ X ;

will be called a generalized symmetric 2-norm on X . The set X is called a
symmetric 2-normed set. In particular, if X = X ×X, the function ‖ · , · ‖
will be called a generalized symmetric 2-norm on X and the pair (X, ‖ · , · ‖)
a generalized symmetric 2-normed space.

In [4], [5], [6], [7] we considered properties of generalized 2-normed spaces
and 2-normed sets.

In what follows we shall use the following results:

Theorem 1.4. [4] Let (X × Y, ‖ · , · ‖) be a generalized 2-normed space.
Then the family B of all sets defined by

n⋂

i=1

{x ∈ X ; ‖x, yi‖ < ε},

where y1, y2, ..., yn ∈ Y, n ∈ N and ε > 0, forms a complete system of neigh-
borhoods of zero for a locally convex topology in X.
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We will denote it by the symbol T (X,Y ). Similarly, we have the preceding
theorem for a topology T (Y,X) in the space Y . In the case when X = Y we
will write: T1(X) = T (X,Y ) and T2(X) = T (Y,X).

Let (X × Y, ‖ · , · ‖) be a generalized 2-normed space and let Σ be a
directed set. A net {xσ ;σ ∈ Σ} is convergent to xo ∈ X in (X, T (X,Y )) if and
only if for all y ∈ Y and ε > 0 there exists σo ∈ Σ such that ‖xσ − xo, y‖ < ε
for all σ ≥ σo. Similarly we have the notion of convergence in (Y, T (Y,X)).

A sequence {xn;n ∈ N} ⊂ X is a Cauchy sequence in (X, T (X,Y )) if
and only if for every y ∈ Y and ε > 0 there exists a number no ∈ N such that
inequality n,m > no implies ‖xn−xm, y‖ < ε. A space (X, T (X,Y )) is called
sequentially complete if every Cauchy sequence in (X, T (X,Y )) is convergent
in this space. Analogously we have the notion of sequential completeness for
the space (Y, T (Y,X)).

Example 1.5. [4] Let X be a real linear space which have two norms
(seminorms) ‖ · ‖1, ‖ · ‖2. Then (X, ‖ · , · ‖) is a generalized 2-normed space
with the 2-norm defined by the formula

‖x, y‖ = ‖x‖1 · ‖y‖2 for each x, y ∈ X.
Let us remark that topologies generated by these norms ‖ · ‖1 and ‖ · ‖2

coincide with the topologies T1(X) and T2(X) given in Theorem 1.4.

Example 1.6. In Example 1.5 we can get ‖ · ‖1 = ‖ · ‖2. Then
(X, ‖ · , · ‖) is a generalized symmetric 2-normed space with the symmetric
2-norm defined by the formula

(1.1) ‖x, y‖ = ‖x‖ · ‖y‖ for each x, y ∈ X.

Let us remark that a symmetric 2-normed space need not be a 2-normed
space in the sense of Gähler. For instance given in Example 1.6 x 6= θ, y =
kx, k 6= 0 we obtain

‖x, y‖ = ‖x, kx‖ =| k | ·‖x, x‖ =| k | ·‖x‖2 > 0,

but in spite of this x and y are linearly dependent. The 2-normed space from
Example 1.6 is not a 2-normed space in the sense of Definition 1.1.

It is easy to see that if (X, ‖ · ‖) is a normed space, T1−the topology
generated by this norm and T2−the topology generated by the 2-norm defined
by the formula (1.1), then T1 = T2. Moreover a sequence {xn;n ∈ N} is a
Cauchy sequence in (X, ‖ · ‖) if and only if it is a Cauchy sequence in
(X, ‖ · , · ‖) with the 2-norm defined in Example 1.6.

Thus the following theorem follows.

Theorem 1.7. A normed space (X, ‖ · ‖) is a Banach space if and only if
the symmetric 2-normed space with the 2-norm defined by (1.1) is sequentially
complete.
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2. The space of all bounded 2-linear operators

In [8] A. G. White defined and considered the properties of bounded 2-
linear functionals from B×B, where B denotes a 2-normed space in the sense
of Gähler. He proved that the set of all bounded 2-linear functionals is a
Banach space.

S. S. Kim, Y. J. Cho and A. G. White in [3] and A. Khan in [2] gave the
properties of bounded operators from X ×X with values in a normed space
Y , where X denotes a 2-normed space in the sense of Gähler. They showed
that the set B(X ×X,Y ) of all bounded operators from X ×X into Y is a
seminormed space. Moreover, if Y is a Banach space, then B(X ×X,Y ) is a
complete space.

In this section we will consider bounded 2-linear operators defined on a
2-normed set into a normed space. We will show, like in the above mentioned
papers, that the space of these operators is a Banach space. We will prove
that under some additional conditions it is a symmetric 2-normed space.

Let us consider a real linear space X . Let D ⊂ X×X be a 2-normed set,
Y a normed space.

Definition 2.1. An operator F : D → Y is said to be 2-linear if it satisfies
the following conditions:

1. F (a+ c, b+ d) = F (a, b) + F (a, d) + F (c, b) + F (c, d) for a, b, c, d ∈ X
such that a, c ∈ D b ∩ D d.

2. F (αa, βb) = α · β · F (a, b) for α, β ∈ R, (a, b) ∈ D.

Definition 2.2. A 2-normed operator F is said to be bounded if there is
a positive number K such that

‖F (a, b)‖ ≤ K · ‖a, b‖ for all (a, b) ∈ D.
Definition 2.3. If F is a bounded operator, then the following number

‖F‖ = inf{K > 0; ‖F (a, b)‖ ≤ K · ‖a, b‖ for (a, b) ∈ D}
will be called the norm of the 2-linear operator F .

Example 2.4. Let
(
X, ( · | · )

)
be a real inner product space. Then X

is a generalized symmetric 2-normed space with the 2-norm defined as follows:

‖x, y‖ =| (x | y) | for all x, y ∈ X.
This 2-norm generates a weak topology in the Hilbert space (see Example 1.5
in [4]). An operator F : X ×X → R defined by the formula

F (a, b) = (a | b) for a, b ∈ X
is 2-linear and bounded. Moreover ‖F‖ = 1.

In the next theorem we will give properties of the above mentioned no-
tions.
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Theorem 2.5. Let F be a bounded 2-linear operator. Then:

(a) ‖F‖ ≤ K for K ∈ P(F ) = {K ′
> 0; ‖F (a, b)‖ ≤ K

′ · ‖a, b‖ for
(a, b) ∈ D};

(b) ‖F (a, b)‖ ≤ ‖F‖ · ‖a, b‖ for each (a, b) ∈ D;
(c)

‖F‖ = sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ = 1}
= sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ ≤ 1}

= sup

{‖F (a, b)‖
‖a, b‖ ; (a, b) ∈ D, ‖a, b‖ 6= 0

}
.

Proof. The condition (a) follows from the Definition 2.3.
(b) Because the operator F is bounded, then there exists K > 0 such that

‖F (a, b)‖ ≤ K · ‖a, b‖ for (a, b) ∈ D.

Thus ‖F (a, b)‖ ≤ infK ′∈P(F ) K
′ · ‖a, b‖, i.e.

‖F (a, b)‖ ≤ ‖F‖ · ‖a, b‖.

(c) By (b), sup

{‖F (a, b)‖
‖a, b‖ ; (a, b) ∈ D, ‖a, b‖ 6= 0

}
≤ ‖F‖.

Let A = sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ = 1}. Then

A = sup

{‖F (a, b)‖
‖a, b‖ ; (a, b) ∈ D, ‖a, b‖ = 1

}

≤ sup

{‖F (a, b)‖
‖a, b‖ ; (a, b) ∈ D, ‖a, b‖ ≤ 1

}

≤ sup

{‖F (a, b)‖
‖a, b‖ ; (a, b) ∈ D, ‖a, b‖ 6= 0

}

≤ ‖F‖.

(2.1)

Moreover

(2.2) A ≤ sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ ≤ 1}.

Let (a, b) ∈ D be such that ‖a, b‖ 6= 0. Because
∥∥∥

a

‖a, b‖ , b
∥∥∥ = 1, then

∥∥∥F
( a

‖a, b‖ , b
)∥∥∥ ≤ A. And further by virtue of the equalities

∥∥∥∥F
(

a

‖a, b‖ , b
)∥∥∥∥ =

∥∥∥∥
1

‖a, b‖ · F (a, b)

∥∥∥∥ =
1

‖a, b‖ · ‖F (a, b)‖

we obtain ‖F (a, b)‖ ≤ A · ‖a, b‖. On the other hand, if (a, b) ∈ D and ‖a, b‖ =
0, then 0 ≤ ‖F (a, b)‖ ≤ ‖F‖ · ‖a, b‖ = 0, i.e. ‖F (a, b)‖ = 0 = A · ‖a, b‖.
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Consequently ‖F (a, b)‖ ≤ A · ‖a, b‖ for all (a, b) ∈ D, which means that
A ∈ P(F ). By virtue of (a) we obtain

(2.3) ‖F‖ ≤ A.
The conditions (2.1) and (2.3) imply

‖F‖ = sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ = 1}

= sup

{‖F (a, b)‖
‖a, b‖ ; (a, b) ∈ D, ‖a, b‖ 6= 0

}
.

From (b) we have sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ ≤ 1} ≤ ‖F‖, which with
(2.2) gives the equality ‖F‖ = sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ ≤ 1}, and the
proof is completed.

Definition 2.6. Let D ⊂ X × X be a 2-normed set and Y a normed
space. Denote by L2(D, Y ) the set of all bounded 2-linear operators from D
into Y .

In particular, we will write L2(X,Y ), if X is a generalized 2-normed
space and D = X ×X.

Let F,G ∈ L2(D, Y ) and define

1. (F +G)(a, b) = F (a, b) +G(a, b) for all (a, b) ∈ D;
2. (α · F )(a, b) = α · F (a, b) for α ∈ R, (a, b) ∈ D.

Theorem 2.7. If D is a 2-normed set and Y a normed space, then the
set L2(D, Y ) is a normed space with the norm ‖ · ‖ defined in Definition 2.3.

Proof. Let us take F,G ∈ L2(D, Y ), α, β ∈ R and a, b, c, d ∈ X such
that a, c ∈ D b ∩ D d. For F +G we obtain:

(F +G)(a+ c, b+ d) =

= (F +G)(a, b) + (F +G)(a, d) + (F +G)(c, b) + (F +G)(c, d);
(2.4)

(F +G)(αa, βb) = αβ · (F +G)(a, b).(2.5)

Moreover by virtue of the condition (b) of Theorem 2.5 we have

‖(F +G)(a, b)‖ = ‖F (a, b) +G(a, b)‖
≤ ‖F (a, b)‖+ ‖G(a, b)‖ ≤ ‖F‖ · ‖a, b‖+ ‖G‖ · ‖a, b‖
= (‖F‖+ ‖G‖) · ‖a, b‖.

(2.6)

Thus F +G ∈ L2(D, Y ).
Analogously we show that α · F ∈ L2(D, Y ) and

(2.7) ‖(α · F )(a, b)‖ = ‖α · F (a, b)‖ ≤| α | ·‖F‖ · ‖a, b‖.
Moreover it is easy to prove that the set L2(D, Y ) is a real linear space.

Now we will show that the function ‖ · ‖ : L2(D, Y ) → [0,∞) given in
Definition 2.3 satisfies all conditions of a norm.
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If ‖F‖ = 0, then ‖F (a, b)‖ = 0 for all (a, b) ∈ D. Thus F (a, b) = 0 for
every (a, b) ∈ D. Conversely, if F is a zero operator, then

‖F‖ = sup{‖F (a, b)‖; (a, b) ∈ D, ‖a, b‖ = 1} = 0.

As a consequence we have the condition

‖F‖ = 0 if and only if F = 0.

From (2.7) we have | α | · ‖F‖ ∈ P (αF ), which with Theorem 2.5 (a) implies
the inequality ‖α · F‖ ≤| α | · ‖F‖. Assume α 6= 0. Then

‖F‖ =

∥∥∥∥
1

α
· α · F

∥∥∥∥ ≤
1

| α | · ‖αF‖,

i.e. | α | · ‖F‖ ≤ ‖α · F‖; thus | α | · ‖F‖ = ‖α · F‖.
For α = 0 the equality ‖α · F‖ =| α | · ‖F‖ is obvious. Therefore

‖α · F‖ =| α | · ‖F‖ for α ∈ R.
The condition (2.6) implies ‖F‖+ ‖G‖ ∈ P (F+G). Hence and from The-

orem 2.5(a) we have ‖F + G‖ ≤ ‖F‖ + ‖G‖. This completes the proof.

Theorem 2.8. If D is a 2-normed set and Y is a Banach space, then
L2(D, Y ) is a Banach space.

Proof. According to Theorem 2.7, L2(D, Y ) is a normed space.
Let {Fn;n ∈ N} be a Cauchy sequence in L2(D, Y ). Then

lim
n,m→∞

‖Fn − Fm‖ = 0

and for every (a, b) ∈ D the following inequality

‖Fn(a, b)− Fm(a, b)‖ = ‖(Fn − Fm)(a, b)‖ ≤ ‖Fn − Fm‖ · ‖a, b‖

is true. Thus {Fn(a, b);n ∈ N} is a Cauchy sequence in Y for every (a, b) ∈ D.
Because Y is complete, the sequence {Fn(a, b);n ∈ N} is convergent for every
(a, b) ∈ D. Let us denote

F (a, b) = lim
n→∞

Fn(a, b).

We shall show that F ∈ L2(D, Y ).
For a, b, c, d ∈ X such that a, c ∈ D b ∩ D d we have

F (a+ c, b+ d) = lim
n→∞

Fn(a+ c, b+ d)

= lim
n→∞

Fn(a, b) + lim
n→∞

Fn(a, d) + lim
n→∞

Fn(c, b) + lim
n→∞

Fn(c, d)

= F (a, b) + F (a, d) + F (c, b) + F (c, d).
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Moreover for α, β ∈ R and (a, b) ∈ D we have:

F (αa, βb) = lim
n→∞

Fn(αa, βb)

= lim
n→∞

αβ · Fn(a, b)

= αβ · lim
n→∞

Fn(a, b)

= αβ · F (a, b).

Thus F is a 2-linear operator.
The inequality

| ‖Fn‖ − ‖Fm‖ |≤ ‖Fn − Fm‖
implies that {‖Fn‖;n ∈ N} is a Cauchy sequence in R. As a consequence this
sequence is bounded, that is, there exists K > 0 such that ‖Fn‖ ≤ K for all
n ∈ N . Using this result we get

‖F (a, b)‖ ≤ ‖Fn(a, b)‖+ ‖F (a, b)− Fn(a, b)‖
≤ ‖Fn‖ · ‖a, b‖+ ‖F (a, b)− Fn(a, b)‖
≤ K · ‖a, b‖+ ‖Fn(a, b)− F (a, b)‖.

Letting n → ∞ we obtain ‖F (a, b)‖ ≤ K · ‖a, b‖ for every (a, b) ∈ D, which
means that F is bounded. So we have shown that F ∈ L2(D, Y ).

Now let us suppose that (a, b) ∈ D and ‖a, b‖ 6= 0. Let ε > 0. Because
{Fn;n ∈ N} is a Cauchy sequence, there exists no ∈ N such that

‖Fn − Fm‖ <
ε

4
for all n,m ≥ no.

Thus ‖Fn(a, b)−Fm(a, b)‖ ≤ ‖Fn− Fm‖ · ‖a, b‖ < ε
4 · ‖a, b‖ for all n,m ≥ no.

The equality

F (a, b) = lim
n→∞

Fn(a, b)

implies that there exists n1 = n1(a, b) ≥ no such that

‖Fn1(a, b)− F (a, b)‖ < ε

4
· ‖a, b‖.

As a consequence we obtain

‖Fn(a, b)− F (a, b)‖ ≤ ‖Fn(a, b)− Fn1(a, b)‖+ ‖Fn1(a, b)− F (a, b)‖

<
ε

2
· ‖a, b‖

for n ≥ no, (a, b) ∈ D and ‖a, b‖ 6= 0. If ‖a, b‖ = 0, then Fn(a, b) = 0 =
F (a, b), so ‖Fn(a, b)−F (a, b)‖ = ε

2 ·‖a, b‖. Thus ‖Fn(a, b)−F (a, b)‖ ≤ ε
2 ·‖a, b‖

for all n ≥ no, (a, b) ∈ D, i.e.

ε

2
∈ P (Fn−F ) for n ≥ no.
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Therefore ‖Fn − F‖ ≤ ε
2 < ε for n ≥ no, which means that the sequence

{Fn;n ∈ N} is convergent to F in L2(D, Y ). Hence we have shown that
L2(D, Y ) is a Banach space, which finishes the proof.

From Theorem 2.8 and Theorem 1.7 the following corollary follows.

Corollary 2.9. If X is a symmetric 2-normed set and Y is a Banach
space, then L2(X , Y ) is a symmetric sequentially complete 2-normed space
with the 2-norm defined as follows:

‖F,G‖ = ‖F‖ · ‖G‖ for F,G ∈ L2(X , Y ).

3. Banach-Steinhaus Theorems for bounded 2-linear operators

In this section we will consider properties of sequences of operators from
L2(D, Y ). We will formulate Banach-Steinhaus Theorems for a family of these
operators.

Proposition 3.1. Let D be a 2-normed set, Y a normed space and
{Fn;n ∈ N} ⊂ L2(D, Y ). If the sequence of norms {‖Fn‖;n ∈ N} is
bounded, then for each (x, y) ∈ D the sequence of norms {‖Fn(x, y)‖;n ∈ N}
is bounded.

Proof. From the assumption it follows that there exists a positive num-
ber M such that ‖Fn‖ ≤M for each n ∈ N . Thus for (x, y) ∈ D we obtain

‖Fn(x, y)‖ ≤ ‖Fn‖ · ‖x, y‖ ≤M · ‖x, y‖ for each n ∈ N.

Theorem 3.2. Let X be a generalized 2-normed space and Y a normed
space. If {Fn;n ∈ N} ⊂ L2(X,Y ) is pointwise convergent to F and the
sequence of norms {‖Fn‖;n ∈ N} is bounded, then F ∈ L2(X,Y ).

Proof. For all x, y ∈ X we have

F (x, y) = lim
n→∞

Fn(x, y).

Thus the operator F is a 2-linear operator.
Because the sequence of norms {‖Fn‖;n ∈ N} is bounded, then there

exists M > 0 such that ‖Fn‖ ≤ M for all n ∈ N . Thus ‖Fn(x, y)‖ ≤
‖Fn‖ · ‖x, y‖ ≤M · ‖x, y‖. Let us take x, y ∈ X . Then

‖F (x, y)‖ ≤ ‖Fn(x, y)− F (x, y)‖+ ‖Fn(x, y)‖ ≤
≤ ‖Fn(x, y)− F (x, y)‖+M · ‖x, y‖.(3.1)

By letting n → ∞ we obtain ‖F (x, y)‖ ≤ M · ‖x, y‖ for each x, y ∈ X . This
gives that F is bounded. As a consequence we have shown that F ∈ L2(X,Y ).
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Theorem 3.3. Let Y be a Banach space, (X, ‖ · , · ‖) a generalized 2-
normed space and let A be a linearly dense set in the spaces (X, T1(X)) and
(X, T2(X)). If a sequence {Fn;n ∈ N} ⊂ L2(X,Y ) is pointwise convergent
on the set A and the sequence of norms {‖Fn‖;n ∈ N} is bounded, then the
sequence {Fn(x, y);n ∈ N} is convergent in Y for each x, y ∈ X.

Proof. Let Xo be the linear subspace of X generated by A. We will con-
sider Xo as a 2-normed space with the same 2-norm induced by that of X . Let
x, y ∈ Xo. Then x = a1x1+ · · ·+akxk, y = b1y1+ · · ·+btyt, where ai, bj ∈ R,
xi, yj ∈ A, i = 1, 2, . . . , k, j = 1, 2, . . . , t; k, t ∈ N , and

Fn(x, y) =

k∑

i=1

t∑

j=1

aibj · Fn(xi, yj).

Because the sequence {Fn(xi, yj);n ∈ N} is convergent for all xi, yj ∈ A, then
{Fn(x, y);n ∈ N} is convergent in Xo.

Let ‖Fn‖ ≤M for every n ∈ N . Let us take a number ε > 0 and x, y ∈ X .
Since Xo is a dense set in (X, T1(X)) we can choose xo ∈ Xo such that

‖x− xo, y‖ <
ε

6M
.

Moreover there exists yo ∈ Xo with the property

‖xo, y − yo‖ <
ε

6M
,

because Xo is also a dense set in (X, T2(X)).
The sequence {Fn(xo, yo);n ∈ N} is convergent, so it is a Cauchy sequence

in Y . Therefore there exists a number no ∈ N such that

‖Fn(xo, yo)− Fm(xo, yo)‖ <
ε

3
for each n,m ≥ no.

As a consequence we obtain

‖Fn(x, y)− Fm(x, y)‖ = ‖Fn(x− xo + xo, y)− Fm(x− xo + xo, y)‖
≤ ‖Fn(x− xo, y)‖+ ‖Fm(x− xo, y)‖

+ ‖Fn(xo, y)− Fm(xo, y)‖
≤ ‖Fn(x− xo, y)‖+ ‖Fm(x− xo, y)‖

+ ‖Fn(xo, y − yo)‖+ ‖Fm(xo, y − yo)‖
+ ‖Fn(xo, yo)− Fm(xo, yo)‖
≤ ‖Fn‖ · ‖x− xo, y‖+ ‖Fm‖ · ‖x− xo, y‖

+ ‖Fn‖ · ‖xo, y − yo‖+ ‖Fm‖ · ‖xo, y − yo‖+
ε

3

≤ 2M · ‖x− xo, y‖+ 2M · ‖xo, y − yo‖+
ε

3
< ε



BOUNDED 2-LINEAR OPERATORS ON 2-NORMED SETS 313

for n,m ≥ no. Hence we have shown that {Fn(x, y);n ∈ N} is a Cauchy
sequence in Y for each x, y ∈ X . Because Y is complete, then the sequence
{Fn(x, y);n ∈ N} is convergent in Y , which finishes the proof.

Theorem 3.4. Let (X, ‖ · , · ‖) be a generalized 2-normed space and
Y a Banach space. If a sequence {Fn;n ∈ N} ⊂ L2(X,Y ) is pointwise
convergent to F ∈ L2(X,Y ) on a linearly dense set A in the spaces (X, T1(X))
and (X, T2(X)) and the sequence of norms {‖Fn‖;n ∈ N} is bounded, then
{Fn;n ∈ N} is pointwise convergent to F and the inequality ‖F‖ ≤ sup

n
‖Fn‖

holds.

Proof. It follows from Theorem 3.3 that the sequence {Fn(x, y);n ∈ N}
is convergent in Y for each x, y ∈ X . Let us denote

H(x, y) = lim
n→∞

Fn(x, y) for every x, y ∈ X.

We must show that H(x, y) = F (x, y) for all x, y ∈ X . Using Theorem 3.2 we
see that H ∈ L2(X,Y ). From assumption it follows that H(x, y) = F (x, y)
for all x, y ∈ A, i.e. (H − F )(x, y) = 0 for x, y ∈ A. Because L2(X,Y ) is a
linear space, then H − F ∈ L2(X,Y ). As a consequence H − F is an 2-linear
operator and (H − F )(x, y) = 0 for x, y ∈ Xo, where Xo denote the set of all
linear combinations of elements from A. Moreover H − F is bounded, thus
there exists K > 0 such that ‖(H−F )(x, y)‖ ≤ K · ‖x, y‖ for every x, y ∈ X .

Let ε > 0, x, y ∈ X . Since the set Xo is dense in (X, T1(X)) we can choose
xo ∈ Xo such that

‖x− xo, y‖ <
ε

2K
.

There exists yo ∈ Xo with the property

‖xo, y − yo‖ <
ε

2K
,

because Xo is also dense in (X, T2(X)). Then we have

0 ≤ ‖(H − F )(x, y)‖ = ‖(H − F )(x− xo + xo, y)‖
= ‖(H − F )(x− xo, y) + (H − F )(xo, y)‖
= ‖(H − F )(x− xo, y) + (H − F )(xo, y − yo + yo)‖
= ‖(H − F )(x− xo, y) + (H − F )(xo, y − yo) + (H − F )(xo, yo)‖
= ‖(H − F )(x− xo, y) + (H − F )(xo, y − yo)‖
≤ ‖(H − F )(x− xo, y)‖+ ‖(H − F )(xo, y − yo)‖
≤ K · ‖x− xo, y‖+K · ‖xo, y − yo‖ < ε.

This gives ‖(H − F )(x, y)‖ = 0 for each x, y ∈ X , i.e. H(x, y) = F (x, y) for
every x, y ∈ X .
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Let us denote M = sup
n
‖Fn‖. Then for every n ∈ N and x, y ∈ X such

that ‖x, y‖ ≤ 1 we have

‖Fn(x, y)‖ ≤ ‖Fn‖ · ‖x, y‖ ≤M.

Thus

‖F (x, y)‖ = ‖F (x, y)− Fn(x, y) + Fn(x, y)‖
≤ ‖F (x, y)− Fn(x, y)‖+ ‖Fn(x, y)‖
≤ ‖F (x, y)− Fn(x, y)‖+M.

By letting n→∞ we obtain ‖F (x, y)‖ ≤M for x, y ∈ X such that ‖x, y‖ ≤ 1.
This implies ‖F‖ = sup{‖F (x, y)‖;x, y ∈ X, ‖x, y‖ ≤ 1} ≤M , which finishes
the proof.
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