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SPAN MATES AND MESH

K. T. Hallenbeck

Widener University, USA

Abstract. We identify a class of starlike curves with the span
and the semispan equal to the infimum of the set of meshes of the covering
chains. The same result is obtained for a class of indented circles as defined
by West in [5].

1. Introduction

We begin by recalling the definitions of the span and the semispan
introduced by A. Lelek in [2] and [3]. We omit the surjective varieties since
they do not present different concepts for a simple closed curve.

Let X be a connected nonempty metric space. The span σ(X) of X
is the least upper bound of the set of real numbers r ≥ 0 satisfying the
following condition: there exists a connected space Y and a pair of continuous
functions f, g : Y −→ X such that f(Y ) = g(Y ) and dist[f(y), g(y)] ≥ r
for y ∈ Y . To obtain the definition of the semispan σ0(X) we replace the
condition f(Y ) = g(Y ) with the inclusion f(Y ) ⊃ g(Y ). It was proven by
Lelek in [3, p. 39] that when X is a continuum σ0(X) ≤ ε(X), where ε(X) is
the infimum of the set of meshes of the chains that cover X .

The span of a simple closed curve, in general, has not been determined
yet. Nevertheless, some progress has been made. This author has managed to
determine the span and the semispan of the curves that constitute boundaries
of convex domains [4]. T. West has computed the span and the semispan of
a type of curve called indented circle [5]. We improve some of her results and
show that the span she computed is, for the most part, equal to ε(X). The
results of this paper, together with those of [4], help to identify the class of
simple closed curves X for which the span equals ε(X).
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A starlike curve is a simple closed curve whose every point can be seen
from a fixed point in the bounded component of its complement. Thus, X is
starlike if there is a point P in the bounded component D of C \X such that
PQ \ {Q} ⊂ D for each point Q ∈ X .

A simple closed polygonal path is a simple closed curve consisting of
finitely many line segments.

Let X be a simple closed polygonal path, starlike with respect to the
origin. A vertex W ∈ X is considered to be outer if and only if the angle
at W in the bounded component of C \X is less than π. A vertex W ∈ X
is considered to be inner if the angle at W in the unbounded component of
C \X is less than π. A connected subset of X between two consecutive outer
vertices is called a segment. Each segment inherits the positive orientation
from X and hence has a uniquely determined beginning and end. A segment
with the beginning A and the end B will be represented by AB. In contrast,
AB− denotes the line segment connecting A and B.

The distance dist(A, Y ) from a point A to a set Y in the plane is defined,
as usual, by letting dist(A, Y ) = inf

P∈Y
dist(A,P ), where P is a point in Y .

Definition 1.1. Let AB and CD be two segments of a starlike polygonal

path X. The span distance between AB and CD, s(AB,CD), is defined as

s(AB,CD) =

=max{min(dist[A,CD], dist[D,AB]),min(dist[B,CD], dist[C,AB])}.

Definition 1.2. Let AB and CD be two different segments of a starlike

polygonal path X. We say that AB is first with respect to CD if s(AB,CD) =
min(dist[B,CD], dist[C,AB]). We call AB second with respect to CD if

s(AB,CD) = min(dist[A,CD], dist[D,AB]).

Definition 1.3. Let Vi−1, Vi and Vi+1 be three consecutive, in the positive

direction, outer vertices on X, and let AB be a segment on X, AB 6= Vi−1Vi,

AB 6= ViVi+1. We say that Vi is significant with respect to AB if Vi−1Vi is

first with respect to AB, ViVi+1 is second with respect to AB and ViVi+1 is

not first with respect to AB.

Notice that each segment AB has at least one significant vertex associated
with it since the segment immediately following AB is first with respect to
it and the segment immediately preceding AB is second, but not first, with
respect to it.

Definition 1.4. Let AB be a segment on X, let Vi be a significant vertex

with respect to AB and let Vi+1 be the next in the positive direction outer

vertex on X. The segment ViVi+1 is called a span mate of AB.
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2. Span mates and mesh

Throughout this section X will represent a simple closed polygonal path,
starlike with respect to the origin. We shall denote the quadrilateral with
vertices A,B,C and D by ABCD. For any point P in the plane, |P | means
the distance of P from the origin.

Let AB be a segment onX . Let V1, . . . , VN be all outer vertices onX\AB
in their consecutive positive order, so that V1 immediately follows B and VN

immediately precedes A. Suppose Vi is the only significant vertex with respect
to AB, for some i, 1 ≤ i ≤ N . Notice that then VkVk+1 is first with respect to
AB for all k = 1, . . . , i− 1, and VkVk+1 is second (but not first) with respect
to AB for all k = i, . . . , N − 1.

The following lemma offers a chaining technique based on the span
distance between the segments of X .

Lemma 2.1. Let X be a starlike polygonal path with the outer vertices

V0, . . . , VN+1 in the consecutive positive order, |V0| = · · · = |VN+1|. Suppose

Vi is the only vertex significant with respect to VN+1V0, and let ε > 0. If

VkVk+1 is first with respect to VnVn+1 for each n, k such that 0 ≤ n < k ≤ i
or i ≤ n < k ≤ N then there exists a chain of closed sets {Cj}1≤j≤M with

mesh not larger than s(VN+1V0, ViVi+1) + ε such that X ⊂
⋃

1≤j≤M

Cj.

Proof. For any outer vertex V and any segment PQ on X define
V (PQ) to be the point on PQ such that dist[V, V (PQ)] = dist[V, PQ].
Thus, S(VN+1V0, ViVi+1) = min{dist[Vi, Vi(VN+1V0)], dist[V0, V0(ViVi+1)]}.
Suppose ε > 0.

We shall assume that Vj(VkVk+1) 6= Vj+1(VkVk+1) for any j, k. Whenever
necessary, the equality can be eliminated by choosing two distinct points
on VkVk+1 close enough to Vj(VkVk+1) so that dist[Vj , Vj(VkVk+1)] and
dist[Vj+1, Vj+1(VkVk+1)] are lengthened at most by an arbitrarily fixed
fraction of ε. Similarly, we assume that Vj(VkVk+1), Vj+1(VkVk+1) ∈
int(VkVk+1).

We shall first consider the case when s(VN+1V0, ViVi+1) =
dist[Vi, Vi(VN+1V0)]. Let X1 be the component of X \ {Vi, Vi(VN+1V0)} that
contains V1, and letX2 = X\X1. Since Vi−1Vi is first with respect to VN+1V0,
we have

s(Vi−1Vi, VN+1V0) = min{dist[Vi, Vi(VN+1V0)], dist[VN+1, VN+1(Vi−1Vi)]}

and, consequently,

min{dist[V0, V0(Vi−1Vi)], dist[Vi−1, Vi−1(VN+1V0)]}

≤ s(Vi−1Vi, VN+1V0) ≤ dist[Vi, Vi(VN+1V0)].
If

min{dist[V0, V0(Vi−1Vi)], dist[Vi−1Vi−1(VN+1V0)]} =

dist[Vi−1, Vi−1(VN+1V0)]
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then we define D1 to be the quadrilateral ViVi(VN+1V0)Vi−1(VN+1V0)Vi−1.
Otherwise, D1 = ViVi(VN+1V0)V0V0(Vi−1Vi), provided ViVj(VN+1V0)

− ∩
V0V0(Vi−1Vi)

− = ∅. If the line segments ViVi(VN+1V0)
− and V0V0(Vi−1Vi)

−

intersect we use the chaining technique of case III in the proof of Theorem 3
in [1], which we outline in the next paragraph for the sake of completeness of
this paper.

Let P be the point of intersection of the line segment ViVi(VN+1V0)
−

and int(Vi−1Vi). If dist[P, V0] ≤ dist[Vi, Vi(VN+1V0)] then we put D1 =
ViVi(VN+1V0)V0P

′, where P ′ is a point on PVi−1 chosen so that dist[V0, P
′] <

dist[V0, P ] + ε/2. Suppose now that dist[P, V0] > dist[Vi, Vi(VN+1V0)] and
choose a point Vi(VN+1V0)

′ on Vi(VN+1V0)V
−
0 such that dist[Vi(VN+1V0)

′, Vi]
< dist[Vi(VN+1V0), Vi]+ ε/2. Next, choose a point V ′

i , on ViV0(ViVi+1)
− such

that dist[V ′
i , Vi(VN+1V0)] < dist[Vi, Vi(VN+1V0)]+ε/2, and a point V0(Vi−1Vi)

′

on V0(Vi−1Vi)V
−
i−1 such that dist[V0(Vi−1Vi)

′, V0] < dist[V0(Vi−1Vi), V0] +

ε/2. Finally, choose a point V0(Vi−1Vi)
′′ on V0(Vi−1Vi)

′V −
i−1 such that

dist[V0(Vi−1Vi)
′′, V0] < dist[V0(Vi−1Vi), V0] + ε/2. In lieu of D1 we use the

hexagon V ′
i V0(Vi−1Vi)Vi(VN+1V0)Vi(VN+1V0)

′V0(Vi−1Vi)
′Vi followed by the

quadrilateral V0(Vi−1Vi)
′Vi(VN+1V0)

′V0V0(Vi−1Vi)
′′.

It is understood that this technique will be used automatically throughout
the proof whenever needed.

To define D2 we must consider the two above definitions of D1 separately.
In the case when D1 = ViVi(VN+1V0)V0V0(Vi−1Vi) we appeal to the

assumption that Vi−1Vi is first with respect to V0V1. We have

s(Vi−1Vi, V0V1) = min{dist[Vi, Vi(V0V1)], dist[V0, V0(Vi−1Vi)]}

and, consequently,

min{dist[Vi−1, Vi−1(V0V1)], dist[V1, V1(Vi−1Vi)]}

≤ s(Vi−1Vi, V0V1) ≤ dist[V0, V0(Vi−1Vi)].

If min{dist[Vi−1, Vi−1(V0V1)], dist[V1V1(Vi−1Vi)]} = dist[Vi−1, Vi−1(V0V1)]
we put D2 = V0(Vi−1Vi)V0Vi−1(V0V1)Vi−1. Otherwise, we put D2 =
V0(Vi−1Vi)V0V1V1(Vi−1Vi).

In the case when D1 = ViVi(VN+1V0)Vi−1(VN+1V0)Vi−1 we appeal to the
assumption that Vi−2Vi−1 is first with respect to VN+1V0. We have

s(Vi−2Vi−1, VN+1V0) =

min{dist[Vi−1, Vi−1(VN+1V0)], dist[VN+1, VN+1(Vi−2Vi−1)]}

and, consequently,

min{dist[Vi−2, Vi−2(VN+1V0)], dist[V0, V0(Vi−2Vi−1)]}

≤ s(Vi−2Vi−1, VN+1V0) ≤ dist[Vi−1, Vi−1(VN+1V0)].
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If

min{dist[Vi−2, Vi−2(VN+1V0)], dist[V0V0(Vi−2Vi−1)]} =

dist[Vi−2, Vi−2(VN+1V0)]

we put D2 = Vi−1Vi−1(VN+1V0)Vi−2(VN+1V0)Vi−2. Otherwise, we put D2 =
Vi−1Vi−1(VN+1V0)V0V0(Vi−2Vi−1).

We continue this construction of the sequence D1, D2, . . . until we reach
the set DK such that there is at most one outer vertex V on X1 \

⋃
1≤j≤K

Dj.

If there is such V then we define DK+1 to be the triangle connecting V
with the two vertices of DK disjoint from DK−1. Otherwise, DK+1 = ∅.
Notice that X1 ⊂

⋃
1≤j≤K+1

Dj . Furthermore, neither of the sides of Dj with

endpoints on X1 and the interior in the bounded component of C\X exceeds
dist[Vi, Vi(VN+1V0)] in length, j = 1, . . . ,K.

We now proceed to cover X2 with a similar sequence of closed sets. Since
s(VN+1V0, ViVi+1) = dist[Vi, Vi(VN+1V0)] we have

min{dist[VN+1, VN+1(ViVi+1)], dist[VI=1, Vi+1(VN+1V0)]}

≤ dist[Vi, Vi(VN+1V0)].

If

min{dist[VN+1,VN+1(ViVi+1)], dist[Vi+1Vi+1(VN+1V0)]} =

= dist[VN+1, VN+1(ViVi+1)]

then we define D−1 to be the quadrilateral VN+1(ViVi+1)VN+1Vi(VN+1V0)Vi.
Otherwise, D−1 = Vi+1Vi+1(VN+1V0)Vi(VN+1V0)Vi.

In order to define D−2 we consider the two above definitions of D−1

separately.
In the case when D−1 = VN+1(ViVi+1)VN+1Vi(VN+1V0)Vi we appeal to

the assumption that ViVi+1 is second with respect to VNVN+1. It follows that
s(ViVi+1, VNVN+1) = min{dist[Vi, Vi(VNVN+1), dist[VN+1, VN+1(ViVi+1)].
Therefore,

min{dist[Vi+1,Vi+1(VNVN+1)], dist[VN , VN (ViVi+1)]} ≤

≤ s(ViVi+1, VNVN+1)

≤ dist[VN+1, VN+1(ViVi+1)]

≤ dist[Vi, Vi(VN+1V0)].

If

min{dist[Vi+1,Vi+1(VNVN+1)], dist[VNVN (ViVi+1)]} =

= dist[Vi+1, Vi+1(VNVN+1)]

we put D−2 = Vi+1Vi+1(VNVN+1)VN+1VN+1(ViVi+1). Otherwise, D−2 =
VN (ViVi+1)VNVN+1VN+1(ViVi+1).
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In the case whenD−1 = Vi+1Vi+1(VN+1V0)Vi(VN+1V0)Vi we appeal to the
assumption that Vi+1Vi+2 is second with respect to VN+1V0. It follows that
s(Vi+1Vi+2, VN+1V0) = min{dist[Vi+1, Vi+1(VN+1V0), dist[V0, V0(Vi+1Vi+2)].
Hence

min{dist[Vi+2,Vi+2(VN+1V0)], dist[VN+1, VN+1(Vi+1Vi+2)]}

≤ s(Vi+1Vi+2, VN+1V0)

≤ dist[Vi+1, Vi+1(VN+1V0)]

≤ dist[Vi, Vi(VN+1V0)].

If

min{dist[Vi+2,Vi+2(VN+1V0)], dist[VN+1VN+1(Vi+1Vi+2)]} =

= dist[Vi+2, Vi+2(VN+1V0)]

we put D−2 = Vi+2Vi+2(VN+1V0)Vi+1(VN+1V0)Vi+1. Otherwise, D−2 =
VN+1(Vi+1Vi+2)VN+1Vi+1(VN+1V0)Vi+1.

The construction of the sequence D−1, D−2, . . . stops with a definition of
the set DJ , −∞ < J < −1, such that there exists at most one outer vertex V
on X2 \

⋃
J≤j≤−1

Dj . If such V exists then DJ−1 is defined to be the triangie

connecting V with the two vertices of DJ disjoint from DJ+1. Otherwise,
DJ−1 = ∅. Clearly, X2 ⊂

⋃
J−1≤j≤−1

Dj. Moreover, neither of the sides of Dj

with endpoints on X2 and the interior in the bounded component of C \X
exceeds dist[Vi, Vi(VN+1V0)] in length, j = J − 1, . . . ,−1.

We now turn to the other possible starting point, i. e. s(VN+1V0, ViVi+1) =
dist[V0, V0(ViVi+1)]. Let X2 be the component of X \ {V0, V0(ViVi+1)} that
contains VN+1, and put X1 = X \ (X2 ∪ {V0, V0(ViVi+1}). The construction
of the sequences {Dj}1≤j≤K+1 and {Dj}J−1≤j≤−1 covering X2 and X1,
respectively, is analogous.

It follows from the construction that both sides ofDj whose interiors lie in
the bounded component of C \X are not longer than s(VN+1V0, ViVi+1), j =
J, . . . ,−1, 1, . . . ,K. In order to combine {Dj}1≤j≤K+1 and {Dj}J−1≤j≤−1

put Q1 = Dj−1, . . . , Q1−J = D−1, Q2−J = D1, . . . , QK−J = DK+1.
For every quadrilateral Qj , 1 < j < K − J , let ej, fj, gj and hj be its

consecutive vertices chosen so that int(ejfj) and int(gjhj) are contained in
the bounded component of C \ X . If diam(Qj) > s(VN+1V0, ViVi+1) + ε
we partition ejhj and fjgj with sequences of points {pn}1≤n≤n(j) and
{rn}1≤n≤n(j), respectively, such that p1 = ej , pn(j) = hj , r1 = fj , rn(j) = gj
and diam(pkrkrk+1pk+1) ≤ s(VN+1V0, ViVi+1) + ε for every k, 1 ≤ k < n(j).
We define Ck,j to be the quadrilateral pkrkrk+1pk+1 for every k, 1 ≤ k < n(j).
If diam(Qj) ≤ s(VN+1V0, ViVi+1) + ε we put C1,j = Qj, b(j) = 1.

If Q1 6= ∅ and diam(Q1) > s(VN+1V0, ViVi+1) + ε then a similar partition
will replace it by a chain of polygons {Ck,1}1≤k≤n(1) such that diam(Ck,1) ≤
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s(VN+1V0, ViVi+1) + ε for each k, 1 ≤ k ≤ n(1), and
⋃

1≤k≤n(1)

Ck,1 = Q1. If

Q1 6= ∅ and diam(Q1) ≤ s(VN+1V0, ViVi+1) + ε we put C1,j = Qj , n(j) = 1.
If QK−J 6= ∅ and diam(QK−J) > s(VN+1, V0, ViVi+1) + ε then QK−J is

partitioned into an analogous sequence {Ck,K−J}1≤k≤n(K−J). If QK−J 6= ∅
and diam(QK−J) ≤ s(VN+1V0, ViVi+1) + ε we put C1,K−J = QK−J , n(K −
J) = 1.

The chain
⋃

1≤k≤n(1)

Ck,1 ∪ · · · ∪
⋃

1≤k≤n(j)

Ck,j ∪ · · · ∪
⋃

1≤k≤n(K−J)

Ck,K−J

has the desired properties. This concludes the proof of the lemma.

It is convenient to denote the vertices of the starlike polygonal line X in
the following theorem by V0, V1, . . . , VN+1 in their consecutive positive order.
Whenever an arbitrary VjVj+1 is considered it will be understood that j + 1
is taken modulo N + 2.

We shall suppose that no segment onX has more than one span mate. We
represent the span mate of VjVj+1, by βj the significant vertex with respect
to VjVj+1 by Bj , and the other endpoint of βj by Aj for j = 0, . . . , N + 1.

For any two line segments CD and PQ in the plane L[CD −→ PQ]
shall represent an affine transformation of CD onto PQ with P and Q
corresponding to C and D, respectively.

Theorem 2.2. Let X be a starlike polygonal path with the outer vertices

V0, . . . , VN+1 in the consecutive positive order, |V0| = · · · = |VN+1|, and

suppose each segment on X has exactly one span mate. If for every segment

VjVj+1 for which Bj 6= Bj+1 either Vj+1 is significant with respect to BjAj or

Vj+2 is significant with respect to BjAj , and the latter implies that Bj+1 = Aj

then σ(X) = σ0(X) = ε(X).

Proof. Let 0 ≤ j ≤ N + 1. It follows from the assumptions that every
segment VkVk+1 contained in the positive arc Vj+1Bj must have its significant
vertex Bk on the positive arc BjVk−1. We shall show that, in addition, Bk

must lie on the positive arc BjVj , as long as Vk+1 6= Bj .
Suppose not. Then there exists a segment, which for the notational

convenience we assume to be VN+1V0, and an i, 0 < i < N + 1, such that

(2.1) BN+1 = Vi

and

(2.2) Bi−1 = Vn for some n, 1 ≤ n ≤ i− 2.

Moving in the negative direction from VN+1, we look for the first segment
whose significant vertex is not Vi or the first vertex which is significant,
whichever comes first.



182 K. T. HALLENBECK

Suppose the former comes first and let m be the number, i < m < N +1,
such that Bm 6= Vi while Bk = Vi for all m < k < N + 1. Since any two
adjacent segments have their significant vertices at most two segments apart,
it follows that Bm = Vi−1 or Bm = Vi−2.

If Bm = Vi−1 then Bi−1 = Vn for n = m + 1 or n = m + 2. Since
m < N + 1, we have m < n ≤ N + 1 or n = 0. This contradicts (2.2).

If Bm = Vi−2 then, by the same token, Bi−2 = Vn for somem < n ≤ N+1
or n = 0. Since Bm+1 = Vi the case Bi−2 = Vm+1 implies that Bi−1 = Vm+2

which contradicts (2.2). Suppose now that Bi−2 = Vm+2 and consider the
cases m < N and m = N separately.

If m < N then, in view of Bm+2 = Vi, we have Bi−1 = Vn for n = m+ 1
or n = m + 2. Hence, Bi−1 = Vn for some n, m < n ≤ N + 1, and (2.2) is
contradicted again.

If m = N then, since Bm = Vi−2 and Bi−2 = V0, it follows that BN+1 =
Vi−1. This contradicts (2.1).

Suppose now we first encounter a significant vertex while moving in the
positive direction from VN+1. Let M be a number, i < M ≤ N +1, such that
VM is a significant vertex, Vj is not significant for all j, M < j ≤ N + 1, and
Bj = Vi for all j, M ≤ j ≤ N + 1. It follows that VM = Bi−1 or VM = Bi−2.
However, (2.2) excludes the former and we have VM = Bi−2. The latter and
BM = Vi imply that Bi−1 = VM+1 and contradict (2.2).

We have shown that, given an arbitrary j, every segment VkVk+1,
contained in the positive arc Vj+1Bj must have its significant vertex Bk on
the positive arc BjVj provided Vk+1 6= Bj . Note that if Vk+1 = Bj then either
Bk = Vj+1 or Bk lies on the positive arc BjVj .

It follows that

VkVk+1 is first with respect to VnVn+1

for each n, k such that 0 ≤ n < k ≤ i.
(2.3)

Next we claim that for every j, 0 ≤ j ≤ N+1, if Vj = Bm for somem then
VmVm+1 must be contained in the positive arc Vj+1Bj . Indeed, uniqueness
of Bj implies that all segments on the positive arc BjVj are second, and not
first, with respect to VjVj+1. This would be contradicted if VmVm+1 were
located on that arc since Vj = Bm implies that VjVj+1 is second, and not first
with respect to VmVm+1.

Consider an arbitrary significant vertex Vj , on the positive arc ViVN+1.
Since Bj lies on the positive arc V0Vi, the above claim implies that Vj = Bm

for some m, 0 ≤ m ≤ i. It follows that

VkVk+1 is first with respect to VnVn+1

for each n, k such that i ≤ n < k ≤ N .
(2.4)

In view of (2.3) and (2.4), ε(X) ≤ s(VN+1V0, BN+1AN+1) by virtue of
Lemma 2.1, and since V0 was an arbitrarily chosen outer vertex on X we
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conclude that ε(X) ≤ s(VjVj+1, BjAj) for every j, 0 ≤ j ≤ N + 1. Hence,

(2.5) ε(X) ≤ min
0≤j≤N+1

s(VjVj+1, BjAj).

We now partition [0, 1] into 2(N + 2) line segments and define two
mappings f, g : [0, 1] −→ X in the following way.

Let P0 = (0, 0), P1 = (1/2(N + 2), 0), . . . , Pn = (n/2(N + 2), 0), . . . ,
P2(N+2) = (1, 0). For t ∈ [0, 1/2(N + 2)] set f(t) = L[P0P1 → VN+1V0](t)
and g(t) = BN+1. For t ∈ [1/2(N + 2), 1/N + 2] set f(t) = V0 and
g(t) = L[P1P2 → BN+1AN+1](t), provided B0 6= BN+1; otherwise set
f(t) = L[P1P2 → V0V1] and g(t) = BN+1.

Suppose m, m > 0, is the smallest number such that Bm 6= BN+1. For
t ∈ [0, (m + 1)/2(N + 2)] we set g(t) = BN+1, while f(t) = L[PjPj+1 →
Vj−1Vj ](t) for t ∈ [j/2(N + 2), (j + 1)/2(N + 2)], j = 1, . . . ,m. Then, for
t ∈ [(m + 1)/2(N + 2), (m + 2)/2(N + 2)] we put f(t) = Vm and g(t) =
L[Pm+1Pm+2 → BN+1AN+1](t).

In general, for an arbitrary n, 0 < n < 2(N + 2), such that f(t) =
Vk and g(t) = L[Pn−1Pn → VjVj+1](t) on [(n − 1)/2(N + 2), n/2(N + 2)]
for some k, j, we set f(t) = L[PnPn+1 → VkVk+1](t) and g(t) = Vj+1 on
[n/2(N + 2), (n + 1)/2(N + 2)] provided Bj+1 6= Vk. Otherwise, f(t) = Vk

and g(t) = L[PnPn+1 → Vj+1Vj+2](t) for t ∈ [n/2(N + 2), (n+ 1)/2(N + 2)].
Note that each time g covers a segment VjVj+1 while f(t) = Vk, at least

one of the following holds:

1) Vj = Bk−1, i. e. VjVj+1 is the span mate of the last segment covered
by f

2) Bj = Vk, i. e. the next segment covered by f is the span mate of
VjVj+1.

It follows that dist(f(t), g(t)) ≥ min
0≤j≤N+1

s(VjVj+1, BjAj), t ∈ [0, 1].

Hence,

(2.6) σ(X) ≥ min
0≤j≤N+1

s(VjVj+1, BjAj).

In (2.5) and (2.6) we have shown that

ε(X) ≤ min
0≤j≤N+1

s(VjVj+1, BjAj) ≤ σ(X).

Since it is known that σ(X) ≤ σ0(X) ≤ ε(X), (see [3] or [1]), we conclude
that σ(X) = σ0(X) = ε(X).

3. The chaining of an indented circle

In [5] West constructed a simple closed curve by endowing a circle with a
number of wedge-like indentations at the angles θ0, . . . , θN−1, 0 < θ0 < · · · <
θN−1 < π and at θ0 + π, . . . θN−1 + π. Thus, the indented circle X is a union
of circle arcs and segments containing at most one inner vertex each. We shall
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represent the segments by V0V1, V2V3, . . . , V2N−2V2N−1,W0W1,W2W3, . . . ,
W2N−2W2N−1. Note that VjVj+1 and WjWj+1 are opposite each other,
j = 0, 2, . . . , 2N − 2. The circle arcs are V1V2 ∼, V3V4 ∼, . . . , V2N−1V2N ∼
,W1W2 ∼, . . . ,W2N−1W2N ∼.

We assume that the indentations VjVj+1,WjWj+1 are symmetric with
respect to the line θ = θj/2, θj/2 + π, j = 0, 2, . . . , 2N − 2. However, we do
not need to assume that each indentation contains at most one inner vertex.
We allow finitely many inner vertices on each VjVj+1(WjWj+1).

West determined the span and the semispan of X in [5]. Using the
terminology and notation of this paper we can express her result by the
following equation:

(3.7) σ(X) = σ0(X) = min
j=0,2,...,2N−2

s(VjVj+1,WjWj+1).

We shall show that σ(X) = ε(X).
Without loss of generality assume that

min
j=0,2,...,2N−2

s(VjVj+1,WjWj+1) = s(V0V1,W0W1).

We make the following claim.
(3.8)
For even n, k, 0 ≤ n < k ≤ 2N − 2, VkVk+1, is first with respect to VnVn+1.

To prove it, we let Ln be the line θ = θn/2, θn/2+π and observe that
every point on VkVk+1 lies in the same half-plane of C \ Ln as Vn+1. Hence,
dist[Vn, VkVk+1] > dist[Vn+1, VkVk+1]. Furthermore,

min{dist[Vn,VkVk+1], dist[Vk+1, VnVn+1]} >

> min{dist[Vk, VnVn+1], dist(Vn+1, VkVk+1]}.

It follows that s(VnVn+1, VkVk+1) = min{dist[Vn, VkVk+1], dist[Vk+1, VnVn+1]}
and so VkVk+1 is first with respect to VnVn+1.

Analogous arguments yield the following observations.

For even j, 2 ≤ j ≤ 2N − 2, W0W1,

is first with respect to VjVj+1
(3.9)

For even n, k, 0 ≤ n < k ≤ 2N − 2,

WkWk+1, is first with respect to WnWn+1
(3.10)

For even j, 2 ≤ j ≤ 2N − 2,

V0V1, is first with respect to WjWj+1.
(3.11)

As in section 2 we use Vj(ViVi+1) to represent the point on the segment
ViVi+1 such that dist(Vj , Vj(ViVi+1)] = dist[Vj , ViVi+1].
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We begin by defining a sequence {Dj} of closed sets whose union coversX .
We assume, without loss of generality, that dist[W1, V0V1] ≤ dist[V0,W0W1]
and dist[V1,W0W1] ≤ dist[W0, V0V1]. The three remaining cases can be
handled in a similar manner. As in Lemma 2.1 we ensure that W1(V0V1)
∈ int(V0V1) and V1(W0W1) ∈ int(W0W1). Let D0 be the quadrilateral
W1W1(V0V1)V1V1(W0W1). The case when W1W1(V0V1)

− and V1V1(W0W1)
−

intersect is handled the same way as in Lemma 2.1.
If V1 = V2 then, by virtue of (3.9), we have

min{dist[W0, V2V3], dist[V3,W0W1]} ≤ dist[V2,W0W1].

Note also that dist[V2,W0W1] ≤ s(V0V1,W0W1). We define D1 to be the
quadrilateral V1V1(W0W1)V3V3(W0W1), provided

min{dist[W0, V2V3], dist(V 3,W0W1]} = dist[V3,W0W1].

If V2(W0W1) = V3(W0W1) we apply the same remedy as in Lemma 2.1.
Otherwise, D1 = V1V1(W0W1)W0(V2V3) W0.

If V1 6= V2 thenD1 is the wedge whose boundary consists of V1(W0W1)V
−
1 ,

the arc V1V2 ∼ and V2V1(W0W1)
−. Note that in this case diamD1 =

dist[V1, V1(W0W1)] ≤ s(V0V1,W0W1).
In order to define D2 we must consider the three above definitions of D1

separately.
In the latter case, when D1 is a wedge, we apply (3.9) to V2V3 and

define D2 as one of the two quadrilaterals V1(W0W1)V2W0(V2V3)W0 or
V1(W0W1)V2V3V3(W0W1), depending on min{dist[W0, V2V3], dist[V3,W0W1]}.

In the case when V1 = V2 and D1 = V2V2(W0W1)V3V3(W0W1) we
consider the cases V3 = V4 and V3 6= V4 separately, and define D2 as either a
quadrilateral or a wedge according to the procedure we used to obtain D1.

In the case when V1 = V2 and D1 = V2V2(W0W1)W0(V2V3)W0 we
define D2 to be the wedge whose boundary consists of W0W0(V2V3)

−,
W0(V2V3)V

−
2N−1 and the arc V2N−1W0 ∼, provided V2N−1 6= W0. Otherwise,

we use (3.8) to conclude that V2N−2V2N−1 is first with respect to V2V3 and
defineD2 as one of the two quadrilaterals V2N−1V2N−1(V2V3)V2N−2(V2V3)V2N−2

or V2N−1V2N−1(V2V3)V3V3(V2N−2V2N−1), depending on min{dist[V2N−2, V2V3],
dist[V3, V2N−2V2N−1]}.

We continue the construction of the sequence {Dj}j≥0 until the positive
arc on X from W1(V0V1) to W1 is covered. The last set, say Dm, could be
a triangle, as in Lemma 2.1, or a quadrilateral if all Vi, 1 ≤ i ≤ 2N − 1, are
covered by

⋃
0≤j≤M−1

Dj and a subarc of the positive arc from V1, to W1 is

not.
While the diameter of each Dj which is a wedge does not exceed

s(V0V1,W0W1), the sides of each quadrilateral Dj with endpoints on X and
interiors in the bounded component of C \X do not exceed s(V0V1,W0W1)
as well.
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Appealing to (3.10) and (3.11) we construct a similar sequence
{Dj}−n≤j<0, which, as in Lemma 2.1, covers the remaining portion of X ,
the positive arc from W1, to W1(V0V1).

Let δ > 0. Suppose Dj is an arbitrary wedge in the sequence
{Dj}−n≤j≤m. Without loss of generality we consider the wedge whose
boundary consists of VkVk(ViVi+1)

−, VkVk+1 ∼ and Vk+1Vk(ViVi+1)
−, for

some k, i. We choose a point V ′
i on Vk(ViVi+1)Vk+1(ViVi+1)

− such that
dist[Vk(ViVi+1), V

′
i ] < δ and enlargeDj by adding the triangle Vk(ViVi+1)VkV

′
i .

The quadrilateral Dj+1 is modified accordingly so that Dj ∩ Dj+1 = ∂Dj ∩
∂Dj+1. After this cosmetic change the sequence {Dj}−n≤j≤m is a chain.

Next, we partition all quadrilaterals with diameter larger than s(V0V1,
W0W1) + δ in a manner described in Lemma 2.1, and thus obtain the chain
{Ck}1≤k≤M of closed sets such that diamCk < s(V0V1,W0W1)+ δ for each k,
1 ≤ k ≤ M , and X ⊂

⋃
1≤k≤M

Ck. Hence, ε(X) ≤ s(V0V1,W0W1).

It follows that ε(X) ≤ min
0≤j≤2N−2

s(VjVj+1,WjWj+1).

The latter inequality, σ0(X) ≤ σ(X), and (3.7) imply that σ(X) = ε(X).

Remark 3.1. The reader will observe that the indentation VjVj+1 need
not be symmetric with respect to Lj, as long as dist[Vj , Lj] = dist[Vj+1, Lj]
and X is starlike with respect to 0, j = 0, 2, . . . , 2N − 2.
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