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Introduction and preliminary remarks

Preliminary remarks

In the wake of the big crisis one has witnessed a significant
increase in the spreads between LIBORs of different tenors as
well as the spread between a LIBOR and the discount curve
(LIBOR-OIS)

→ This has led to the construction of multicurve
models where, typically, future cash flows are
generated through curves associated to the
underlying rates, but are discounted by another
curve.



Introduction and preliminary remarks

Preliminary remarks

The majority of the models that have been considered
reflect the usual classical distinction between

i) short rate models (bottom-up);
ii) HJM setup;
iii) BGM or LIBOR market models (top-down).

In addition, methodologies related to foreign exchange.

→ Concerning i) and ii), short rate models lead more
easily to a Markovian structure, while HJM allows
for a direct calibration to the initial term structure.



Introduction and preliminary remarks

Preliminary remarks

Here we concentrate on short rate models. [Kenyon,
Kijima-Tanaka-Wong, Filipovic-Trolle]
A major goal with this modeling choice will be to derive an
easy relationship between risk-free and “risky” FRAs
thereby exhibiting an “adjustment factor” that plays a role
analogous to “quanto adjustments” in cross-currency
derivatives or to the “multiplicative forward basis” in
[Bianchetti].
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Preliminary remarks

FRA (forward rate agreement) is an OTC derivative that al-
lows the holder to lock in at t < T the interest rate between
the inception date T and the maturity S at a fixed value
K . At maturity S, a payment based on K is made and one
based on the relevant floating rate (generally the spot Libor
rate L(T ; T , S)) is received.

→ Considering later on a single tenor, we let the
maturity be S = T + ∆ and denote the value of the
FRA at t < T by FRAT (t , K ).
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Preliminary remarks

To present the basic ideas in a simple way, here we
consider a two-curve model, namely with a curve for
discounting and one for generating future cash flows:

i) The choice of the discount curve is not
unique; we follow the common choice of
considering the OIS swap curve.

ii) For the risky cash flows without collateral we
consider a single LIBOR (i.e. for a given
tenor).
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Preliminary remarks

We describe an approach that we present here for the case of
pricing of FRAs (linear derivatives).

We consider only “clean valuation” formulas, namely
without counterparty risk.
To account for counterpart risk and funding issues,
various value adjustments are generally computed on top
of the clean prices.
As pointed out in [Crepey, Grbac, Ngor, Skovmand],
market quotes typically reflect prices of fully
collateralized transactions. The clean price formulas thus
turn out to be sufficient also for calibration.
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Preliminary remarks

Traditionally, interest rates are defined to be coherent with
the bond prices p(t , T ), which represent the expectation of
the market concerning the future value of money.

→ For discrete compounding forward rates this leads
to (t < T < S)

F (t ; T , S) =
1

S − T

(
p(t , T )

p(t , S)
− 1

)

The formula can also be justified as representing the fair
fixed rate at time t of a FRA, where the floating rate
received at S is

F (T ; T , S) =
1

S − T

(
1

p(T , S)
− 1

)
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Preliminary remarks

In fact, the arbitrage-free price in t of such a FRA is (using
the forward martingale measure QS)

FRAT (t , K ) = p(t , S) EQS {(F (T ; T , S)− K ) | Ft}

which is zero for

K = EQS {(F (T ; T , S) | Ft}
= EQS

{
1

S−T

(
p(T ,T )
p(T ,S) − 1

)
| Ft

}
= 1

S−T

(
p(t ,T )
p(t ,S) − 1

)



Introduction and preliminary remarks

Preliminary remarks

Since the discount curve is considered to be given by the
OIS zero-coupon curve (p(t , T ) = pOIS(t , T )), one uses
also the notation LD(t ; T , S) for F (t ; T , S) and calls it OIS
forward rate.
The pre-crisis (risk-free) forward Libor rate L(t ; T , S) was
supposed to coincide with the OIS forward rate, namely the
following equality was supposed to hold

L(t ; T , S) = LD(t ; T , S) = F (t ; T , S)
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Preliminary remarks

Putting now S = T + ∆ (tenor ∆), recall that the risky
LIBOR rates L(t ; T , T + ∆) are determined by the LIBOR
panel that takes into account various factors such as credit
risk, liquidity, etc. and this implies that in general
L(t ; T , S) 6= F (t ; T , S) thus leading to a LIBOR-OIS spread.
Following some of the recent literature, in particular
[Crepey- Grbac-Nguyen] (see also [Kijima-Tanaka-Wong]),
we keep the formal relationship between discrete
compounding forward rates and bond prices also for the
LIBORs, but replace the risk-free bond prices p(t , T ) by
fictitious ones p̄(t , T ) that are supposed to be affected by
the same factors as the LIBORs.
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Preliminary remarks

Since FRAs are based on the T−spot LIBOR
L(T ; T , T + ∆), we actually postulate the classical
relationship only at the inception time t = T . Our starting
point is thus

L(T ; T , S) =
1
∆

(
1

p̄(T , T + ∆)
− 1

)
→ Notice that also for our “risky bonds” we have

p̄(T , T ) = 1.



FRA pricing

FRAs

In our two-curve risky setup, the fair price of a FRA in t < T with
S = T + ∆, fixed rate K and notional N is then

FRAT (t , K ) = N∆p(t , T + ∆)ET+∆
[
L(T ; T , T + ∆)− K | Ft

]
= Np(t , T + ∆)ET+∆

[
1

p̄(T ,T+∆) − (1 + ∆K ) | Ft

]

where ET+∆ denotes expectation under the (T + ∆)− forward
measure.

→ The simultaneous presence of p(t , T + ∆) and
p̄(t , T + ∆) does not allow for the convenient
reduction of the formula to a simpler form as in the
one-curve setup.



FRA pricing

FRAs

The crucial quantity to compute in the FRAT (t , K ) expres-
sion is

ν̄t ,T := ET+∆

[
1

p̄(T , T + ∆)
| Ft

]
.

→ The fixed rate to make the FRA a fair contract
at time t is then

K̄t :=
1
∆

(ν̄t ,T − 1)



FRA pricing

FRAs

In the classical single curve case we have instead

νt ,T := ET+∆

[
1

p(T , T + ∆)
| Ft

]
=

p(t , T )

p(t , T + ∆)

being p(t ,T )
p(t ,T+∆) an Ft−martingale under the (T + ∆)−

forward measure.

The fair fixed rate in the single curve case is then

Kt =
1
∆

(
νt ,T − 1

)
=

1
∆

(
p(t , T )

p(t , T + ∆)
− 1

)
→ To compute Kt no interest rate model is needed

(contrary to K̄t ).
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The model

To compute the expectation ET+∆ we need a model for
p̄(t , T ).

For this purpose recall first the classical bond price formula
(rt is the short rate)

p(t , T ) = EQ

{
exp

[
−

∫ T

t
rudu

]
| Ft

}

with Q the standard martingale measure,.



The “ risky” short rate model

The model

We now define the “risky bond prices” as

p̄(t , T ) = EQ

{
exp

[
−

∫ T

t
(ru + su)du

]
| Ft

}

with st representing the short rate spread (hazard rate in case
of only default risk).

→ The spread is introduced from the outset.
→ p̄(t , T ) is not an actual price.



The “ risky” short rate model

The model

Next we need a dynamical model for rt and st and for this
purpose we shall introduce a factor model.
For various reasons, in particular in view of our main goal
to obtain an “adjustment factor”, it is convenient to be able
to have the same factor model for FRAs with different
maturities. We therefore aim at performing the
calculations under a single reference measure, namely Q.

→ We shall first recall two basic factor models for the
short rate.



The “ risky” short rate model

The model

Model A. The square-root, exponentially affine model (CIR) model
where rt =

∑I
i=1 γiΨ

i
t with, under Q, (w i

t independent Q−Wiener)

dΨi
t = (ai − biΨi

t)dt + σi
√

c iΨi
t + d i dw i

t

It implies

p(t , T ) = EQ
{

exp
[
−

∫ T
t ru du

]
| Ft

}
= exp

[
A(t , T )−

∑I
i=1 Bi(t , T )Ψi

t

]
→ For c i = 0 the square-root model becomes a

Gaussian mean reverting (Hull-White) model.



The “ risky” short rate model

The model

The above model class includes various specific models
that have appeared in the literature such as e.g. the
following two-factor Gaussian short rate model from
[Filipovic-Trolle] (analogous models for the spreads){

drt = κr (γt − rt)dt + σr dw r
t

dγt = κγ(θγ − γt) + σγ

(
ρ dw r

t +
√

1 − ρ2 dwγ
t

)



The “ risky” short rate model

The model

It suffices in fact to consider two Gaussian factors

dΨi
t = (ai − biΨi

t)dt + σi dw i
t , i = 1, 2

and put {
rt = λ1Ψ1

t + λ2Ψ2
t

γt = λ1a1+λ2a2

b1 + b1−b2

b1 λ2 Ψ2
t

The given model class can also be easily generalized to
affine jump-diffusion models (see e.g.[ Bjoerk, Kabanov,
R.]); only the notation becomes then more involved.



The “ risky” short rate model

The model

Model B. The Gaussian, exponentially quadratic model [Pelsser,
Kijima-Tanaka-Wong] (dual to square-root exponentially affine)

rt =
∑I1

i=1 γiΨ
i
t +

∑I2
i=I1+1 γi(Ψ

i
t)

2

dΨi
t = −biΨi

tdt + σi dw i
t

It implies

p(t , T ) = EQ
{

exp
[
−

∫ T
t ru du

]
| Ft

}
= exp

[
A(t , T )−

∑I1
i=1 Bi(t , T )Ψi

t −
∑I2

i=I1+1 C i(t , T )(Ψi
t)

2
]

→ Advantage of this model in derivative pricing: the
distribution of Ψi

t remains always Gaussian; in a
square-root model it is a χ2−distribution.



The “ risky” short rate model

The model

In presenting joint models for rt and st we want to allow for
non-zero correlation between rt and st .

→ It is obtained by considering common factors, the
remaining ones being idiosyncratic factors.

→ To obtain an adjustment factor, at least one of the
common factors has to satisfy a Gaussian model
(Vasiček/Hull-White).

→ By analogy to the pure short rate case, also here
we consider two model classes.



The “ risky” short rate model

The model

Model A. (based on Morino-R. 2013)
Given three independent affine factor processes Ψi

t , i = 1, 2, 3 let{
rt = Ψ2

t −Ψ1
t

st = κΨ1
t + Ψ3

t

where the common factor Ψ1
t allows for instantaneous correlation

between rt and st with correlation intensity κ (negative correlation
for κ > 0). Other factors may be added to drive st .



The “ risky” short rate model

The model

(Model A. contd.) Let, under Q,
dΨ1

t = (a1 − b1)Ψ1
t dt + σ1 dw1

t

dΨi
t = (ai − bi)Ψi

tdt + σi
√

Ψi
t dw i

t , i = 2, 3

where ai , bi , σi are positive constants with ai ≥ (σi)2/2 for
i = 2, 3, and w i

t independent Q−Wiener processes.
→ Ψ1

t may take negative values implying that, not
only rt , but also st may become negative (see
later).



The “ risky” short rate model

The model

Model B. (analogous to above)
Given again three independent affine factor processes Ψi

t , i = 1, 2, 3
let {

rt = Ψ1
t + (Ψ2

t )
2

st = κΨ1
t + (Ψ3

t )
2

where the common factor Ψ1
t allows again for instantaneous correla-

tion between rt and st with correlation intensity κ . Other factors may
be added to drive st .

Under Q,

dΨi
t = −biΨi

tdt + σi dw i
t , i = 1, 2, 3

where w i
t independent Q−Wiener processes.
→ Ψ1

t might take negative values so that also here rt
and st may become negative.



Results

Bond price relations

For case A. we have

p(t , T ) = exp
[
A(t , T )− B1(t , T )Ψ1

t − B2(t , T )Ψ2
t
]

p̄(t , T ) = exp
[
Ā(t , T )− B̄1(t , T )Ψ1

t − B̄2(t , T )Ψ2
t − B̄3(t , T )Ψ3

t
]

with B̄1(t , T ) = (1 − κ) B1(t , T ), B̄2(t , T ) = B2(t , T ).
It follows that

p̄(t , T ) = p(t , T ) exp
[
Ã(t , T ) + κB1(t , T )Ψ1

t − B̄3(t , T )Ψ3
t

]
where Ã(t , T ) := Ā(t , T )− A(t , T ).



Results

Bond price relations

Putting for simplicity B̃1 := B1(T , T + ∆), it follows that

p(T , T + ∆)

p̄(T , T + ∆)
= exp

[
−Ã(T , T + ∆)− κB̃1Ψ1

T + B̄3(T , T + ∆)Ψ3
T

]
and, defining an adjustment factor as

AdT ,∆
t := EQ

{
p(T , T + ∆)

p̄(T , T + ∆)
| Ft

}
this factor can be expressed as

AdT ,∆
t := e−Ã(T ,T+∆)EQ

{
e−κB̃1Ψ1

T +B̄3(T ,T+∆)Ψ3
T | Ft

}
= A(θ, κ,Ψ1

t ,Ψ
3
t )

with θ := (ai , bi , σi , i = 1, 2, 3).



Results

Main result

Proposition: We have

ν̄t ,T = νt ,T · AdT ,∆
t

·exp
[
κ (σ1)2

2(b1)3

(
1 − e−b1∆

) (
1 − e−b1(T−t)

)2
]

The fair value K̄t of the fixed rate in a “risky” FRA is then
related to Kt in a corresponding riskless FRA as follows:

K̄t =
(
Kt + 1

∆

)
· AdT ,∆

t

·exp
[
κ (σ1)2

2(b1)3

(
1 − e−b1∆

) (
1 − e−b1(T−t)

)2
]
− 1

∆

→ The factor given by the exponential is equal to 1
for zero correlation (κ = 0).



Results

Comments on the main result: adjustment factors

An easy intuitive interpretation of the main result can be
obtained in the case of κ = 0 (independence of rt and st ).
In this case, since st = Ψ3

t > 0, we have rt + st > rt

implying p̄(T , T + ∆) < p(T , T + ∆) so that AdT ,∆
t ≥ 1

(the exponential adjustment factor is equal to 1).

→ As expected we then have

ν̄t ,T ≥ νt ,T , K̄t ≥ Kt



Results

Comments on the main result: calibration

The coefficients a1, a2, b1, b2, σ1, σ2 can be calibrated in the
usual way on the basis of the observations of default-free
bonds p(t , T ).

→ To calibrate a3, b3, σ3, notice that, contrary to
p(t , T ), the “risky” bonds p̄(t , T ) are not
observable (there is no unique inverse relationship
to determine p̄(t , T ) from observations of the
LIBORs).

→ One can however observe Kt = 1
∆

(
p(t ,T )

p(t ,T+∆) − 1
)

as well as the “risky” FRA rate K̄t .



Results

Comments on the main result: calibration

Recalling then the Corollary, namely

K̄t =
(
Kt + 1

∆

)
· AdT ,∆

t

·exp
[
−κ (σ1)2

(b1)3

(
e−b1∆ − 1

) (
1 − e−b1(T−t)

)2
]
− 1

∆

and the fact that AdT ,∆
t = A(θ, κ,Ψ1

t ,Ψ
2
t ), this allows to cali-

brate a3, b3, σ3 as well as κ.



Results

Bond price relations

For case B. we have analogously ((·) stands for (t , T ))

p(t , T ) = exp
[
A(·)− B1(·)Ψ1

t − C2(·)(Ψ2
t )

2]
p̄(t , T ) = exp

[
Ā(·)− B̄1(·)Ψ1

t − C̄2(·)(Ψ2
t )

2 − C̄3(·)(Ψ3
t )

2]
with B̄1(t , T ) = (1 + κ) B1(t , T ), C̄2(t , T ) = C2(t , T ).
It follows that

p̄(t , T ) = p(t , T ) exp
[
Ã(t , T ) + κB1(t , T )Ψ1

t − C̄3(t , T )(Ψ3
t )

2
]

where, again, Ã(t , T ) := Ā(t , T )− A(t , T ).



Results

Bond price relations

Putting again B̃1 := B1(T , T + ∆), it follows that

p(T , T + ∆)

p̄(T , T + ∆)
=exp[−Ã(T ,T+∆)−κB̃1Ψ1

T +C3(T ,T+∆)(Ψ3
T )2]

Introducing the same adjustment factor

AdT ,∆
t := EQ

{
p(T , T + ∆)

p̄(T , T + ∆)
| Ft

}
that can again be expressed as

AdT ,∆
t := e−Ã(T ,T+∆)EQ

{
e−κB̃1Ψ1

T +B̄3(T ,T+∆)Ψ3
T | Ft

}
= A(θ, κ,Ψ1

t ,Ψ
3
t )

where θ := (ai , bi , σi , i = 1, 2, 3), one obtains completely
analogous results as for case A.



Thank you for your attention



Appendix

Preliminary results for determining ν̄t ,T

Due to the affine dynamics of Ψi
t (i = 1, 2, 3) under Q we

have for the risk-free bond

p(t , T ) = EQ
{

exp
[
−

∫ T
t rudu

]
| Ft

}
= EQ

{
exp

[∫ T
t (Ψ1

u −Ψ2
u)du

]
| Ft

}
= exp

[
A(t , T )− B1(t , T )Ψ1

t − B2(t , T )Ψ2
t
]



Appendix

Preliminary results for determining ν̄t ,T

The coefficients satisfy
B1

t − b1B1 − 1 = 0 , B1(T , T ) = 0
B2

t − b2B2 − (σ2)2

2 (B2)2 + 1 = 0 , B2(T , T ) = 0
At = a1B1 − (σ1)2

2 (B1)2 + a2B2 , A(T , T ) = 0

in particular

B1(t , T ) =
1
b1

(
e−b1(T−t) − 1

)



Appendix

Preliminary results for determining ν̄t ,T

For the “risky” bond we have instead

p̄(t , T ) = EQ
{

exp
[
−

∫ T
t (ru + su)du

]
| Ft

}
= EQ

{
exp

[
−

∫ T
t ((κ− 1)Ψ1

u −Ψ2
u −Ψ3

u)du
]
| Ft

}
= exp

[
Ā(t , T )− B̄1(t , T )Ψ1

t − B̄2(t , T )Ψ2
t − B̄3(t , T )Ψ3

t
]



Appendix

Preliminary results for determining ν̄t ,T

The coefficients satisfy
B̄1

t − b1B̄1 + (κ− 1) = 0 , B̄1(T , T ) = 0
B̄2

t − b2B̄2 − (σ2)2

2 (B̄2)2 + 1 = 0 , B̄2(T , T ) = 0
B̄3

t − b3B̄3 − (σ3)2

2 (B̄3)2 + 1 = 0 , B̄3(T , T ) = 0
Āt = a1B̄1 − (σ1)2

2 (B̄1)2 + a2B̄2 + a3B̄3 , Ā(T , T ) = 0

in particular

B̄1(t , T ) =
1 − κ

b1

(
e−b1(T−t) − 1

)
= (1 − κ) B1(t , T )



Appendix

Preliminary results for determining ν̄t ,T

>From the 1−st order equations it follows that

B̄1(t , T ) = (1 − κ) B1(t , T )

B̄2(t , T ) = B2(t , T )

Ā(t , T ) = A(t , T )− a1κ
∫ T

t B1(u, T )du

+ (σ1)2

2 κ2 ∫ T
t (B1(u, T ))2du + (σ1)2κ

∫ T
t B1(u, T )du

−a3 ∫ T
t B̄3(u, T )du

Let

Ã(t , T ) := Ā(t , T )− A(t , T )



Aspects of CAP pricing

Nonlinear derivatives CAPs/Caplets

We concentrate on the pricing of a single Caplet, with
strike K , maturity T on the forward LIBOR for the period
[T , T + ∆]. Using the forward measure, its price in t < T is
then given by

CaplT ,∆(t) = ∆p(t , T + ∆)ET+∆
{(

L̄(T ; T , T + ∆)− K
)+ | Ft

}
= p(t , T + ∆)ET+∆

{(
1

p̄(T ,T+∆) − K̃
)+

| Ft

}
with K̃ := 1 + ∆K .



Aspects of CAP pricing

Nonlinear derivatives CAPs/Caplets

We may use the same “ risky” short rate model as for the
FRAs that we may consider as already calibrated (for the
standard martingale measure Q).
The aim, pursued in the case of the FRAs, of performing
the calculations under the same measure Q leads here to
some difficulties and so we stick to forward measures.

→ Depending on the pricing methodology, one may
then need to change the dynamics of the factors to
be valid under the various forward measures.

→ The R.N.-derivative to change from Q to the
various forward measures can be expresses in
explicit form and it preserves the affine structure.



Aspects of CAP pricing

Nonlinear derivatives CAPs/Caplets

It may thus suffice to derive just a pricing algorithm that
need not also be used for calibration.
It remains however desirable to obtain also here an
“adjustment factor”.



Aspects of CAP pricing

Nonlinear derivatives CAPs/Caplets

For the pricing, in the forward measure, we may use
Fourier transform methods as in [CGN] and [CGNS]
thereby representing the claim as(

eX − K̃
)+

with X := − log p̄(T , T + ∆)

(possibly also a Gram-Charlier expansion as in [KTW]).

→ Need only to compute the moment generating
function of X that is a linear combination of the
factors (computation is feasible thanks to the affine
structure) and use the Fourier transform of

f (x) =
(

ex − K̃
)+

.



Aspects of CAP pricing

Nonlinear derivatives CAPs/Caplets

The price in t = 0 can then be obtained in the form

Capl(0, T , T +∆) =
p(0, T + ∆)

2π

∫
K̃ 1−iv−RM̄T+∆

X (R + iv)

(R + iv) (R + iv − 1)
dv

where M̄T+∆
X (·) is the moment generating function of X under

the (T + ∆)−forward measure.



Aspects of CAP pricing

Nonlinear derivatives CAPs/Caplets

If MT+∆
X (·) is the moment generating function of X with

p(T , T + ∆) instead of p̄(T , T + ∆) then

M̄T+∆
X (·) = MT+∆

X (·)A(·; θ, κ,Ψ1
0,Ψ

2
0,Ψ

3
0)

where, given the affine nature of the factors,
A(·; θ, κ,Ψ1

0,Ψ
2
0,Ψ

3
0) can be explicitly computed.

→ Since, for the above factorization to hold,
A(·; θ, κ,Ψ1

0,Ψ
2
0,Ψ

3
0) contains also (MT+∆

X (·))−1,
this may however not suffice to derive a
satisfactory adjustment factor as for FRAs.
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