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The problem

@ How can one model electricity
day—ahead (“spot”) prices?

@ What is special about electricity
(prices)?

o Electricity is difficult to store.

o Different sources for electricity
generation: coal, nuclear,
natural gas, hydroelectric,
petroleum, solar, wind etc.

Price impact!
@ Why is it important?

e Forward contracts, futures and
option prices.

e Risk management.
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The structure of the market

@ Focus on the European Energy Exchange (EEX) market.

@ Two types of trading activities: Auctions and continuous trading.
Focus on auction.

@ Day—ahead prices determined by a daily auction at 12:00 noon, 7
days a week all year.

@ Underlying quantity to be traded is the electricity for delivery the
following day in 24 hour intervals.

@ Two types of orders: Orders for individual hours and block orders.
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The EEX spot market

Aggregated supply & demand curve: 1st March 2012,
Hour 10-11, Phelix
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Grey curve: Volume Sale, Orange curve: Volume Purchase
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Stylized facts of electricity spot prices

@ Equilibrium prices: Supply and demand determine the spot price
(results in some form of mean—reversion)

@ Non-Gaussian returns

@ (Semi-) heavy—tailed distributions

@ Strong seasonality (over short and long time horizons)
@ Extreme spikes

@ Negative spot prices: Permitted in EEX spot auctions since
September 2008. First occurrence: October 2008.
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Main features of the new modelling framework

@ Panel approach: Model hourly time series as vector of daily
observations.

@ Continuous—time set-up.

@ Model in stationarity (equilibrium prices).
@ Flexible and analytically tractable.

@ Arithmetic model (negative prices!)
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Multivariate Lévy semistationary (M LSS) processes

MLSS process Y = {Y(t)};cg onR™, me N
0=/ gt~ )ols)aL(s)

@ L two-sided d—dimensional Lévy process.

@ g =(gj) : R — R™ deterministic, nonnegative kernel function
with g(s) =0Vs < 0,

@ o = (0j) 6 x d—dim., cadlag, adapted stochastic volatility matrix.

@ Assume independence of o and L.
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Multivariate Lévy semistationary (M LSS) processes

MLSS process Y = {Y(t)};cg onR™, me N
0=/ gt~ )ols)aL(s)

@ L two-sided d—dimensional Lévy process.

@ g =(gj) : R — R™ deterministic, nonnegative kernel function
with g(s) =0Vs < 0,

@ o = (0j) 6 x d—dim., cadlag, adapted stochastic volatility matrix.

@ Assume independence of o and L.

Assumptions

@ Some regularity assumptions needed to guarantee that integral is
well defined.

@ 3 sufficient conditions such that Y semimartingale.

o
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________ Modeling elecriciy prices by ML SS processes |
Model specification for EEX market

Seasonality and trend
@ D : R — R?* deterministic seasonality and trend function.

@ Y MLSS process.

@ Daily observations of the 24 hourly electricity prices in the EEX
market modelled by arithmetic model

S(t) = D(f) + Y(b).

Spike and base component
Assumption:
Yt)= 2Z(t) + &t
~— ~~

base component  spike component

o
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The spike component

@ The spike component is sum of a two stochastic processes
&i(t) = &P() + &(D).

e &' can only jump upwards and then decreases exponentially until
next jump.

e g% can only jump downwards and then increases exponentially
until next jump.

@ Fort>0
ety = [ e Dans)
ety = [ et atn(s)
D, povn > 0, LW = (L%, 138) and Liown — (Ldown [ down)

independent pure jump Lévy subordinators.
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The base component

@ Each base component Z; is a univariate continuous—time
autoregressive moving average (CARMA) process:

t -
- / Gi(t — s)dLi(s),
where

o gj univariate CARMA kernel, i = {1,...,24},
o L=(Ly,...,Lo) two-sided Lévy process

@ For now, we do not allow for stochastic volatility here.

A.E.D. Veraart (Imperial College London) Modelling electricity day—ahead prices Zagreb, 11 May 2012 11/33



CARMA(p;, g;) process

Let p; > g;. Consider CARMA(p;, g;) process Z;:
Z(t) = b/ Vi(1),
where V() is a pi—dimensional Ornstein—Uhlenbeck
aVi(t) = ANi(t)dt + ¢dLi(t), Q)

where p; x pi—matrix A; and p,—dimensional vectors b; and ¢ are

0 1 0 - 0 0 O
0 0 1 ' 0 (1)
A, . . 0 ¢:= |sbi= I:
0 .0 1 0 :
(pi—1)
B ) 1 b;

Note that bg, = 1 and b; = 0 for all g; < j < p;.
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CARMA(p;, g;) process

@ If all eigenvalues of A; have negative real parts, then V;(t) defined
as

t ~
Vi(t) = [ Ao dL(s).

is the (strictly) stationary solution of (1).
@ Moreover,

t -
Z(t) = b7 Vi(t) = / b) eA(-9)¢ di(s),

—0o0

is a CARMA(p;, q;) process.
@ CARMA process can be derived from a LSS process by choosing

gi(t — s) = b/ eMlt=9¢.
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Splitting the data into spikes and base component

@ KlUppelberg et al. (2010) proposed method to split data in spike
(upwards spikes only) and base components.

@ Extended their method to split into upwards and downwards
spikes and base component.

@ Used tools from extreme value statistics to determine an upper
and a lower threshold.
If price is above upper threshold or below lower threshold it is
considered to be a spike.

@ Generalized Pareto distribution for spike jump distribution.
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Estimating the kernel function

@ Let V; be a CARMA(pj, g;) process.

@ Sample V; only at time points nh where h > 0, n € N.
@ Then (Vj(nh))nen is a weak ARMA(p;, pj — 1) process.
@ "weak” means that noise is not necessarily i.i.d..

@ Can transform the parameters from ARMA(2,1) to CARMA(2,1)
and vice versa. Useful for estimation!

@ Fit ARMA(2, 1) model parameters and compute the corresponding
parameters for the CARMA(2, 1) kernel function.
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Recovering the Lévy increments

@ Brockwell et al. (2011) and Brockwell and Schlemm (2011)
proposed method for recovering the increments of the driving Levy
process of a CARMA(p, q) process.

@ Method is based on state space representation of CARMA
process and initially uses continuous observations.

@ Results for discrete time observations can be derived from there.

A.E.D. Veraart (Imperial College London) Modelling electricity day—ahead prices Zagreb, 11 May 2012 16/33



The data

@ EEX data: Daily day—ahead prices for 24 hours.

@ Data from 01/01/2005 to 30/06/2011 (2372 daily data of the
24—dimensional vector).

@ Analysis of the whole data set including weekends.

@ Use the M LSS processes and fit them to deseasonalised and
detrended data.

@ Particular focus on the cross—correlation structure of the daily
observations of the prices for each hour.
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Plot of daily prices for each hour
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Trend and seasonalities
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Trend and seasonalities
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Seasonalities
Computed trimmed means (removing 5 % of data) of detrended data.

7
D(t)i - f(t) = Z b;veekday]lweekday(t):
weekday=1
ie{1,...,24}. b trimmed mean for particular weekday.
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Detrended & deseas. data split into spikes & base
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Empirical and estimated CARMA(2,1) ACF
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Recovered increments of Lévy process driving

CARMA(2,1)
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Distributional properties of recovered Lévy increments

@ Random vector X has m—dimensional multivariate generalized
hyperbolic (GH) distribution X ~ GHn(A, x, ¥, pu, X,7), if it is given
by

X<+ =y +V=CW,
where
o W~ Nk(O, Ik) for k € N,
o CcR™K 1 ~eR™,
e /= 1-dim r.v. with generalized inverse Gaussian distribution
GIG(X, x,v); independent of W.

@ u location parameter, ¥ = CC' dispersion matrix, v skewness
parameter (if v = 0, then symmetric distribution around p).

@ Class of GH distribution contains: Student-t distribution, the
normal inverse Gaussian distribution (NIG), the hyperbolic
distribution (HYP) and the variance gamma (VG) distribution.

o IfX~ GHm()\a X ¥, K, 2, 7)5then )(I ~ GH1 (>\a X5 ¢7 Hi i, 71)
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Model selection within the class of GH distributions

using AIC
Model Symmetric A a AIC Log-Likel. Converged
Student-t FALSE -1.381 0 378150.712 -188726.356 TRUE
GH FALSE -1.334 0.121 378151.520 -188725.760 TRUE
Student-t TRUE -1.380 0 378173.594 -188761.797 TRUE
GH TRUE -1.338 0.112 378174.655 -188761.327 TRUE
NIG FALSE -0.5 0.465 378352.788 -188827.394 TRUE
NIG TRUE -0.5  0.459 378383.696 -188866.848 TRUE
VG TRUE 0.913 0 378853.575 -189101.787 TRUE
VG FALSE 0.913 0 378899.689 -189100.844 TRUE
HYP FALSE 125 0.000 390089.630 -194695.815 TRUE
HYP TRUE 125 0.000 390197.786 -194773.893 TRUE
Gaussian TRUE NA Inf 408684.766 -204018.383 TRUE
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Empirical results

QQ-plots for components of fitted multivariate
asymmetric Student—t distribution
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Empirical results

QQ-plots for components of fitted multivariate
asymmetric NIG distribution
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Cross-correlation of 24 Lévy processes (increments)

@ Cross correlation structure of recovered increments of the driving
process of the CARMA(2,1) process.

@ Each square corresponds to an element in the sample
cross—correlation matrix.

@ Increasing shading intensity reflects stronger correlation

(correlation 1 = black; correlation 0 = white).
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Can we reduce the dimension of the model?

@ Principal components analysis: The figure shows the individual
variances explained by each component and also the cumulative
explained variance depending on the number of components.

@ 14 (!) components ensure that the cumulative proportion of the
variance is greater than 95%.
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Contributions

@ Propose a continuous—time panel—-framework to model
day—ahead electricity prices.

@ Main building block: multivariate Lévy semistationary processes .

@ Derived integrability, semimartingale conditions, cumulant
function, second order structure etc.

@ New modelling framework accounts for mean—reversion/
stationarity, spikes, stochastic volatility, long memory, negative
prices, cross correlations etc.

@ Good empirical results for multivariate CARMA(2,1) process
driven by generalized hyperbolic Lévy process.
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Outlook

@ General MLSS modelling framework allows for stochastic
volatility.

@ We found empirical evidence for stochastic volatility in peak hours.

@ Estimation theory for this general model class (including
stochastic volatility) not yet available.
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|
CARMA(2, 1) process

e If V;is CARMA(2, 1) process, it has representation

t - t ~
V,-(t):/ al(.”e)‘p)(t_s)dL;(S)—i—/ al('Z)eAEZ)(t—s)dLl_(s)’

1 0 2
o XY g BY AP
I )\1(1) . )\1(2)’ I )\1(2) . )\51) '

@ Hence, kernel function is
~ ) 2) \®
gi(h) = (e + aP7) 1 ().

0 a(z) =22+ aVz+d? = (z-\D)(z-\?)).
)\,(1), )\52) are the eigenvalues of A,.
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-
Splitting the data into spikes and base component |

@ Generalized method by Kiliippelberg et al. (2010) to split data in
spike (both upwards and downwards) and base components
Vie{l,...,24}.

@ Yi(nh) is nth observation over a period of length h of a price for
hour i after trend and seasonalities have been removed.

@ We consider an autoregressive transformation for known n}’p, see
Klippelberg et al. (2010) (p. 969)

Yi(h),
Yi(nh) — e "' "Y;(n—1)h), n=2,...,N.

Y/R(h) -
Y/ (nh) -
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|
Splitting the data into spikes and base component |l

@ We then consider the exceedances (Y/R(nh) — Ui)Leyanr(
and determine the threshold u; > 0 such that a (shiftea)
Generalized Pareto Distribution can be used to model the
exceedances, see Klippelberg et al. (2010) (p. 966) for details.

Q LetJi:={ne{1,...,N}|Yi(nh) > u;}. Then we estimate ;" by
an estimator of Davis—McCormick—type, see Davis and

nh)>u;}

McCormick (1989) :
o Yi((n—1)h)
up. — — AN 7
=i (me )
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|
Splitting the data into spikes and base component |

© The spike jumps are estimated as in Klippelberg et al. (2010)
(p- 969) by

éi(nh) = (YAR(nh) — (1 — € ™S)) T yan oy
{Y/" (nh)>u;}

where S; depends on the estimate 7%;. In our data, we obtain
estimates which suggest that the spike impact either vanishes
essentially within one day in which case we use

1 N

S = Y,(nh)l N
e (o Ny YAy < ] 2 e <uy
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|
Splitting the data into spikes and base component IV

otherwise the spike impact in our data vanishes after essentially
two days and then we use

1
S —
" {ne {1, NY[YAR(nh) < u;and YAR((n— 1)h) < u}]
N
D Vi yan(nhy <, and YAR((0— 1)) <
n=2

© Then the upwards spikes are recovered by setting

&P(h) =¢(h),
&®(nh) = e "he®(n—1)h) +&(nh), ne{2,...,N},
and the remainder is
Y,-REM(nh) = Y;(nh) — gfp(nh), ne{1,...,N}.

A.E.D. Veraart (Imperial College London) Modelling electricity day—ahead prices Zagreb, 11 May 2012 38/33



-
Splitting the data into spikes and base component V

@ We then set Yj(nh) := —YREM(nh) foralln € {1,..., N} and go
back to 1.) and repeat the analysis. Then, the downwards spikes
are just (—1) times the new upwards spikes computed in 5.) and
the base component Z; is equal to (—1) times the remainder
computed in 5.).
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