
Proceedings of the 1. Conference on
Applied Mathematics and Computation
Dubrovnik, Croatia, September 13–18, 1999
pp. 155–164

Reduction of Dimension for Parabolic Equations

via Two–Scale Convergence
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Abstract. Inspired by the similar ideas from homogenization theory, in [9] we introduced

the notion of two-scale convergence for thin domains that allow lower-dimensional approxima-

tions. We generalize that idea to evolutional spaces appearing in study of parabolic equations.

We prove the compactness theorem, analogous to the one in stationary case. We apply our

method to quasi-static lubrication problem.
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1. Introduction

The notion of two scale convergence was introduced for periodic homogenization
by Nguetseng [11] and fully developed by Allaire [1]. It is a powerful tool that avoids
formal two-scale expansions and generalizing the idea of the energy method enables
an easy proof of convergence of homogenization process.

Two-scale asymptotic expansions are also the most common tools for study of
processes in thin domains and derivation of lower-dimensional models for their de-
scription (see e.g., [5, 6] (elasticity), [2, 3, 4, 7, 10] (fluid mechanics)). The method
used in those papers can be roughly described as follows:

1. The problem, originally posed in a thin domain, is rewritten on a domain with
unit thickness by introducing a new, dilated (or fast) variable. To do so, the
differential operator has to be replaced with a new one, containing the derivatives
with respect to the dilated variable. As a consequence, the negative powers of
the domain thickness appear, singularly perturbing the operator.

2. On such rescaled domain, independent of the small parameter one can derive the
a priori estimates and pass to the limit in the perturbed equation in order to
get the lower-dimensional approximation. Very often passage to the limit is not
straightforward, but we need to have a good candidate for the limit in order to
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choose an appropriate test function. Such a candidate has to be computed by an
asymptotic expansion (see e.g., [2]). Furthermore, the obtained convergence is
the convergence of the rescaled sequence of the solutions, and not of the original
solutions.

3. If the problem is strongly nonlinear and non-monotone the weak convergence
from step 2 is insufficient to pass to the limit and the correctors giving the strong
convergence have to be found (see e.g., [3, 4]). If one wants to find the correctors
and get the strong convergence, the asymptotic expansion of the solution has to
be computed even for linear problems (see, for instance, [10, 6]).

In analogy with the homogenization theory in [9] we have developed the notion
of two-scale convergence as a tool for deriving lower-dimensional approximations for
stationary problems in thin domains. We generalize that idea to evolutional spaces
Lq(0, T ;W s,r) typical for the study of parabolic PDEs. It enables us to avoid the
three steps described above. To apply the two-scale convergence, we only have to find
sharp a priori estimates. Directly from those estimates we can deduce the form of
our limit and choose the test functions of the same form. We do not need to change
the domain and write the problem in new variables, but can pass to the limit in the
original equation. In addition, our method gives the convergence of the traces.

Finally, in this paper, as an illustration of our method, we study the viscous fluid
flow between two rigid, rough surfaces in relative motion (the lubrication problem).

2. Definition of the two-scale convergence for thin domains

Definition 1. Let ω ⊂ R
m be a bounded C0,1 domain, and let {S(x1)}x1∈ω be a family

of bounded C0,1 domains S(x1) ⊂ R
ℓ. We define a thin domain Ωε ⊂ R

m+ℓ

Ωε = {x = (x1, x2) ∈ R
m+ℓ | x1 ∈ ω, x2 ∈ εS(x1)},

Γε = {x = (x1, x2) ∈ R
m+ℓ | x1 ∈ ω, x2 ∈ ε∂S(x1)},

Σε = ∂Ωε \ Γε.

We put Ω = Ω1, Γ = Γ1, Σ = Σ1. Let T > 0. We say that a sequence {vε}ε>0,
such that vε ∈ Lq(0, T ;Lr(Ωε)), L

q(0, T ;Lr)-two-scale converges to a function V ∈
Lq(0, T ;Lr(Ω)) (notation: (Lq(0, T ;Lr)–2s)) if

lim
ε→0

1

εℓ

∫ T

0

∫

Ωε

vε(x, t)φ

(

x1,
x2

ε
, t

)

dx dt =

∫ T

0

∫

Ω

V (x1, y, t)φ(x1, y, t) dx1 dy dt,

∀φ ∈ Lq′(0, T ;Lr′(Ω)), 1/r + 1/r′ = 1, 1/q + 1/q′ = 1.

We say that a sequence {vε}ε>0 strongly Lq(0, T ;Lr)-two-scale converges to V ∈
Lq(0, T ;Lr(Ω)) (notation: (s–Lq(0, T ;Lr)–2s)) if

lim
ε→0

1

|Ωε|1/r
∣

∣

∣

∣

vε(x, t) − V

(

x1,
x2

ε
, t

)
∣

∣

∣

∣

Lq(0,T ;Lr(Ωε))

= 0.
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Obviously, if {vε} (Lq(0, T ;Lr)–2s) converges to V 0 ∈ Lq(0, T ;Lr(Ω)), 1 < q, r < ∞,
and

lim
ε→0

1

εℓ/r
|vε|Lq(0,T ;Lr(Ωε)) = |V 0|Lq(0,T ;Lr(Ω)),

then vε → V 0 (s–Lq(0, T ;Lr)–2s). Furthermore, if vε → V 0 (s–Lq(0, T ;Lr)–2s) and
wε →W 0 (Lα(0, T ;Lγ)–2s) where 1/r + 1/γ = 1/β, 1/q + 1/α = 1/σ, σ, β ≥ 1, then

vεwε → V 0W 0 (Lσ(0, T ;Lβ)–2s).

As an easy consequence of Definition 1, we also get that vε → V (Lq(0, T ;Lr)–2s)
implies

1

εℓ

∫

εS(·)

vε(·, x2) dx2 ⇀
∫

S(·)

V (·, y) dy weakly in Lq(0, T ;Lr(ω)).

3. Two-scale compactness

The main goal of this paper is to give the compactness theorem for such conver-
gence. We use the obvious notations for the formal partial differential operators

∇x1φ =
∂φ

∂x1
e1 + · · ·+ ∂φ

∂xm
em,

∇x2φ =
∂φ

∂xm+1
em+1 + · · ·+ ∂φ

∂xn
en,

∇yφ =
∂φ

∂ym+1
em+1 + · · ·+ ∂φ

∂yn
en,

divx1 φ =
∂φ1
∂x1

+ · · ·+ ∂φm
∂xm

,

divx2 φ =
∂φm+1

∂xm+1
+ · · ·+ ∂φn

∂xn
,

divy φ =
∂φm+1

∂ym+1
+ · · ·+ ∂φn

∂yn
.

Our next result is the main compactness theorem for the two-scale convergence. This
is, in fact, a simple generalization of the analogous result from [9] to evolutional spaces.

Theorem 1. Let {vε}ε>0, be a sequence of functions such that vε ∈ Lq(0, T ;Lr(Ωε)),
1 < q, r ≤ ∞ and

1

|Ωε|1/r
|vε|Lq(0,T ;Lr(Ωε)) ≤ C.

(i) Then there exists a subsequence {vε′}ε′>0 and a function V 0 ∈ Lq(0, T ;Lr(Ω))
such that vε

′ → V 0 (Lq(0, T ;Lr)–2s).

(ii) Let Xq,r be a space of measurable functions φ on ]0, T [× ω such that |S|1/rφ ∈
Lq(0, T ;Lr(ω)). If

1

|Ωε|1/r
|vε|Lq(0,T ;W 1,r(Ωε)) ≤ C (1)

then there exist a subsequence {vε′}ε′>0,

V 0 = V 0(x1, t) ∈ Zq,r = {φ ∈ Xq,r | ∇x1φ ∈ (Xq,r)m},
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and
W 0 ∈ Y q,r = {φ ∈ Lq(0, T ;Lr(Ω)) | ∇yφ ∈ Lq(0, T ;Lr(Ω))ℓ}

such that
vε

′ → V 0 (Lq(0, T ;Lr)–2s)

∇vε′ → ∇x1V 0 +∇yW
0 (Lq(0, T ;Lr)–2s).

(iii) If
ε

|Ωε|1/r
|∇vε|Lq(0,T ;Lr(Ωε)) ≤ C (2)

then there exist a subsequence {vε′}ε′>0 and W 0 ∈ Y q,r such that

vε
′ →W 0 (Lq(0, T ;Lr)–2s)

ε∇vε′ → ∇yW
0 (Lq(0, T ;Lr)–2s).

(iv) If

lim
ε→0

1

|Ωε|1/r
|∇x2vε|Lq(0,T ;W−1,r(Ωε)) = 0

then the limit V 0 satisfies V 0 = V 0(x1) ∈ Xq,r.

Proof. Since time t acts as a parameter, the above theorem is an easy generalization
of the stationary version of the compactness theorem from [9]. We give a sketch of the
proof and refer to [9] for details.

(i) We define the rescaled function V ε(x1, y, t) = vε(x1, εy, t) for which

|V ε|Lq(0,T ;Lr(Ω)) ≤ C.

We can extract a subsequence {V ε′} converging to some V 0 ∈ Lq(0, T ;Lr(Ω))
weakly in Lq(0, T ;Lr(Ω)). That is equivalent to the (Lq(0, T ;Lr)–2s) conver-
gence of vε

′

.

(ii) If, in addition, (1) holds, then

|∇x1V ε|Lq(0,T ;Lr(Ω)) ≤ C, |∇yV
ε|Lq(0,T ;Lr(Ω)) ≤ Cε.

We first get that ∇yV
0 = 0 implying V 0 = V 0(x1, t). We have, in addition, that

ε−1|∇yV
ε|Lq(0,T ;Lr(Ω)) ≤ C. Therefore, there exists W 0 ∈ Y q,r such that

ε−1∇yV
ε ⇀ ∇yW

0 weakly in Lq(0, T ;Lr(Ω)).

The proof of (iii) is the same as the proof of existence of W 0 in (ii). The proof of (iv)
is analogous to the proof that V 0 = V 0(x1, t) in (ii).

We also have the same convergence results for traces as in the stationary case.
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Proposition 1.

(i) Suppose that {vε}ε>0 is a sequence of functions

vε ∈ Lq(0, T ;W 1,r(Ωε)), 1 < q, r <∞
such that (1) holds. Then, in addition to (ii) from Theorem 1, we have

lim
ε→0

1

εℓ

∫ T

0

∫

Σε

[

vε(x, t)− V 0

(

x1,
x2

ε
, t

)]

ψ

(

x1,
x2

ε
, t

)

dΣε dt = 0,

lim
ε→0

1

εℓ−1

∫ T

0

∫

Γε

[

vε(x, t)− V 0

(

x1,
x2

ε
, t

)]

φ

(

x1,
x2

ε
, t

)

dΓε dt = 0,

for any ψ ∈ Lq′(0, T ;Lr′(Σ)) and φ ∈ Lq′(0, T ;Lr′(Γ)).

(ii) Suppose that |S(x1)| ≥ c0 > 0 (for simplicity) and that each S(x1) is star-shaped
with respect to (x1, 0). If (2) holds, then, in addition to Theorem 1 (iii), we get

lim
ε→0

1

εℓ−1

∫ T

0

∫

Γε

(

vε(x, t)− V 0

(

x1,
x2

ε
, t

))

φ

(

x1,
x2

ε
, t

)

dΓε dt = 0,

for any φ ∈ Lq′(0, T ;Lr′(Γ)).

Proof.

(i) As in the proof of Theorem 1, we get the uniform estimates for rescaled sequence
V ε in Lq(0, T ;W 1,r(Ω)), and the result follows from the boundedness of the trace
operator γ0 : Lq(0, T ;W 1,r(Ω)) → Lq(0, T ;Lr(∂Ω)).

(ii) The rescaled sequence V ε(x1, y) = vε(x1, εy) satisfies the uniform estimate
|V ε|Y q,r ≤ C implying that |γ0(V ε)|Lq(0,T ;Lr(Γ)) ≤ C, and we see that V ε′ ⇀ V 0

weakly in Lq(0, T ;Lr(Γ)).

Remark 1. The estimate (1) is typical for the case when the boundary condition on
Γε is dynamic, like Neumann’s or Robin’s. Consequently, the convergence of traces on
Γε is not of particular interest as is the convergence on Σε, where Dirichlet’s condition
can be imposed. On the other hand, the estimate (2) is typical for Dirichlet’s problems,
and the above result is important for trace on Γ. However, we have no information
about the value of V 0 on Σ. This effect, typical for Dirichlet’s problems in thin domains
is called the boundary layer phenomenon.

However, the boundary layer on the lateral boundary Σ for incompressible fluids
appears only in direction tangential to the boundary, while the normal traces converge.

Proposition 2. Let {vε} be a sequence such that vε ∈ Lq(0, T ;Lr(Ωε)), 1 < q, r <∞,
div vε = 0, vε ·n = 0 on ΓT

ε = [0, T [×Γε and (2) holds. Then there exist a subsequence
{vε′} that (Lq(0, T ;Lr)–2s) converges to some V 0 ∈ Lq(0, T ;Lr(Ω)), divy V

0 = 0 and

divx1

(

∫

S(x1) V
0 dy

)

= 0. Furthermore
(

1
(ε′)ℓ

∫

ε′S(·) v
ε′ dx2

)

· n →
(

∫

S(·) V
0 dy

)

· n
weakly in Lq′(0, T ;W−1/r,r(∂ω).

Proof. Follows from Theorem 1 and a simple partial integration.
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4. An application

4.1. Description of the problem

We consider the flow of a viscous fluid in a thin domain between two plates in
relative motion. This is a classical problem of a lubricant injected in a slipper bearing
(see [2, 7] for a stationary case). We suppose that two surfaces Γ± are rough (so that
the bearing needs to be lubricated), and that they are moving with time dependent
velocities s±(t), respectively. The microscopic flow of lubricant, which is supposed
to be a viscous, Newtonian fluid, is governed by the Navier–Stokes system. We are
interested in a global (macroscopic) behaviour of the flow of lubricant. In fact, by
asymptotic analysis of the Navier–Stokes system in a thin domain (with thickness
that tends to 0), we want to find a 2–D model for description of such a thin film flow.
In the stationary case the macroscopic law is the Reynolds law. Here, we get the
quasi-stationary Reynolds law, where time appears only as a parameter.

We suppose that ω ⊂ R
2 is a bounded C0,1 domain, and that the shape functions

h± ∈ C2(ω) satisfy h+ > 0, h− < 0. We finally define

Ωε = {x = (x1, x3) ∈ R
3 | x1 = (x1, x2) ∈ ω, εh−(x1) < x3 < εh+(x1)},

Γ±
ε = {x3 = εh±}.

For time interval [0, T ], T > 0, the flow is assumed to be governed by the Navier–Stokes
system

∂uε

∂t
− µ∆uε + (uε∇)uε +∇pε = f in ΩT

ε = Ωε × ]0, T [, (3)

div uε = 0 in ΩT
ε , (4)

uε = ε2s± = ε2(s±1 , s
±

2 , 0) on ΓT±
ε = Γ±

ε × ]0, T [, (5)

uε = ε2g
(

x1,
x3
ε

)

on ΣT
ε = Σε × ]0, T [, (6)

uε(·, 0) = εu0 in Ωε, (7)

where s+1 (t), s
+
2 (t), s

−

1 (t), s
−

2 (t) ∈ H1(0, T ), f ∈ C1(ω × [0, T ])3, u0 ∈ H2(ω)3,
g = (g1, g2, 0) ∈ H1(0, T ;H3/2(Σ))3,

∫

Σ
g(·, t) · n = 0 and g(x1, h±, t) = s±(t) (a.e.)

for t ∈]0, T [.
Under the above conditions, due to the fact that we are treating the case of a

small Reynolds number

Reε =
Uε Lε

µ
=
O(ε2) · O(ε)

O(1)
= O(ε3),

we can apply Theorem 3.7 from [12] and conclude that the problem (3)–(7) has a
unique solution

uε ∈ H1(0, T ;H1(Ωε))
3 ∩W 1,∞(0, T ;L2(Ωε))

3

and pε ∈ L2(0, T ;L2(Ωε)/R).
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4.2. A priori estimates

The only part in applying our method that demands an effort is the derivation of
sharp a priori estimates.

Proposition 3. Under the above conditions there exists a constant C > 0, indepen-
dent of ε, such that

1
√

|Ωε|
∣

∣ε−2uε
∣

∣

L2(ΩT
ε )

≤ C (8)

ε
√

|Ωε|
∣

∣∇
(

ε−2uε
)∣

∣

L2(ΩT
ε )

≤ C (9)

1
√

|Ωε|

∣

∣

∣

∣

∂uε

∂t

∣

∣

∣

∣

L2(ΩT
ε )

≤ C (10)

1
√

|Ωε|
|∇pε|L2(0,T ;H−1(Ωε))

≤ Cε (11)

1
√

|Ωε|
|pε|L2(ΩT

ε ) ≤ C. (12)

Before starting the proof, we recall the result from [8] (see also [9]).

Lemma 1. For any r ∈ [1, 3[ and q ∈ [1, 3r
3−r [ there exists a constant C(r, q), inde-

pendent of ε, such that

|φ|Lq(Ωε) ≤ C(r, q) ε1+(q−1
−r−1) |∇φ|Lr(Ωε),

for any φ ∈ W 1,r(Ωε) such that φ = 0 on some part of Γ±
ε with positive measure.

To begin the proof of Proposition 3, we define the function h ∈ H1(0, T ;H1(Ω))3

such that, for any t ∈ [0, T ]











div h(·, t) = 0 in Ω,

h(·, t) = s±(t) on Γ±,

h(x1, y, t) = g(x1, y, t) on Σ,

and |h|H1(0,T ;H1(Ω)) ≤ C. We now define

Hε(x) =
(

h1

(

x1,
x3
ε

)

, h2

(

x1,
x3
ε

)

, εh3

(

x1,
x3
ε

))

so that the function vε = uε − ε2Hε is divergence free and has a zero trace on ∂Ωε.
We can now prove (9).

Lemma 2.

|∇uε|L2(0,T ;L2(Ωε)) ≤ Cε3/2.
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Proof. Multiplying (3) by vε and integrating over ΩT
ε , we obtain

|∇uε|2L2(ΩT
ε ) =

ε3

2
|u0|2L2(ω) + µε2

∫

ΩT
ε

∇uε∇Hε + ε2
∫

ΩT
ε

(uε∇)Hεvε +

∫

ΩT
ε

fvε.

Since
∫

ΩT
ε

(uε∇)Hεuε ≤ Cε3/2|∇uε|2L2(ΩT
ε )|∇Hε|L∞(0,T ;L2(Ωε)) ≤ Cε|∇uε|2L2(ΩT

ε ),

the claim is proved.

Lemma 3.
∣

∣

∣

∣

∂uε

∂t

∣

∣

∣

∣

L∞(0,T ;L2(Ωε))

≤ C
√
ε.

Proof. We follow the proof of Theorem 3.7 from [12]. Let {uεm} denote the sequence
of Galerkin’s approximations for uε. For t = 0, by direct integration we obtain

∣

∣

∣

∣

∂uεm
∂t

(·, 0)
∣

∣

∣

∣

2

L2(Ωε)

≤
(

εµ|∆u0|L2(Ωε) + ε2
√
ε |u0|L∞(ω)|∇u0|L2(ω) +

√
ε |f(·, 0)|L2(ω)

)

·
( ∣

∣

∣

∣

∂uεm
∂t

(·, 0)
∣

∣

∣

∣

L2(Ωε)

+ ε2
∣

∣

∣

∣

∂Hε

∂t
(·, 0)

∣

∣

∣

∣

2

L2(Ωε)

)

leading to
∣

∣

∣

∣

∂uεm
∂t

(·, 0)
∣

∣

∣

∣

L2(Ωε)

≤ C
√
ε.

As in the proof of Theorem 3.7 from [12], we conclude that µ−Cε3/2|∇uεm|L2(Ωε) > 0

for any t ∈ [0, T ]. Now, deriving with respect to t, multiplying by
∂uε

m

∂t and integrating
over ΩT

ε , we obtain

∣

∣

∣

∣

∂uεm
∂t

∣

∣

∣

∣

2

L2(Ωε)

≤ C

( ∣

∣

∣

∣

∂uεm
∂t

(·, 0)
∣

∣

∣

∣

2

L2(Ωε)

+

∣

∣

∣

∣

∂f

∂t

∣

∣

∣

∣

2

L2(ΩT
ε )

+ ε4
∣

∣

∣

∣

∇
(

∂Hε

∂t

)∣

∣

∣

∣

2

L2(ΩT
ε )

)

≤ C
√
ε.

Lemma 4.

|∇pε|L2(0,T ;H−1(Ωε)) ≤ ε3/2.

Proof. Let φ ∈ H1
0 (Ω

T
ε )

3. Then

〈∇pε|φ〉 = µ

∫

ΩT
ε

(

∇uε∇φ− (uε∇)uεφ+ fφ
)

−
∫

ΩT
ε

∂uεm
∂t

φ ≤ Cε3/2|∇φ|L2(0,T ;L2(Ωε)).

Finally, we need a variant of Nečas inequality (see [9] for the proof).
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Lemma 5. There exists C > 0 such that, for any φ ∈ L2(ΩT
ε ),

∣

∣

∣

∣

φ(x, t) − |Ωε|−1

∫

Ωε

φ(·, t) dx
∣

∣

∣

∣

L2(ΩT
ε )

≤ Cε−1|∇φ|L2(0,T ;H−1(Ωε)).

Now an application of Lemma 5 on (11) proves (12), ending the proof of Proposition 3.

Theorem 1 and Propositions 1 and 2 imply the existence of U0 ∈ Y 2,2, P 0 =
P 0(x1, t) ∈ L2(ωT ), ωT = ω × ]0, T [, such that (up to a subsequence)

ε−2uε → U0, ε−1∇uε → ∂U0

∂y
e3, pε → P 0 (L2(0, T ;Lr)–2s), (13)

∂U0
3

∂y
= 0,

divx1

(
∫ h+

h−

U0 dy

)

= 0 in ωT ,

U0 = s± on Γ±

T = Γ± × ]0, T [,

U0
3 = 0 on Γ±

T =⇒ U0
3 = 0,

(
∫ h+

h−

U0 dy

)

· n =

(
∫ h+

h−

g dy

)

· n on ∂ω.

Since U0
3 = 0, we choose a test function φ ∈ Y 2,2 such that φ = 0 on ∂ΩT , φ3 = 0.

Using the above convergence, we pass to the limit in the variational form of (3)

−
∫

ΩT
ε

uε
∂φε

∂t
+ µ

∫

ΩT
ε

∇uε∇φε +
∫

ΩT
ε

(uε∇)uεφε =

∫

ΩT
ε

fφε +

∫

ΩT
ε

pε divx1 φε,

where φε(x, t) = φ
(

x1, x3

ε , t
)

, and we get

µ

∫

ΩT

∂U0

∂y

∂φ

∂y
=

∫

ΩT

fφ+

∫

ωT

P 0 divx1

(
∫ h+

h−

φdy

)

. (14)

This is a two-scale problem.

Proposition 4. There exist a unique U0 = (U0
1 , U

0
2 , 0) ∈ Y 2,2 and a unique (up to a

constant) P 0 ∈ L2(ωT ) solution of (14). Furthermore, we have










































−µ ∂
2U0

∂y2
= f −∇x1P 0 in ΩT = Ω× ]0, T [,

divx1

(
∫ h+

h−

U0 dy

)

= 0 in ωT ,

(
∫ h+

h−

U0 dy

)

· n =

(
∫ h+

h−

g dy

)

· n on ∂ωT , U0(x1, h±, t) = s±.

(15)
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The uniqueness implies that not only subsequences, but whole sequences in (13) are
convergent. The above problem (15) can be decoupled and we obviously have (16)–
(18). To summarize, we have the following result.

Theorem 2. Let (uε, pε) be the solution of the Navier–Stokes system (3)–(7). Let
P 0 ∈ L2(0, T ;H1(ω)) and U0 ∈ Y 2,2 be the solutions of the quasi-stationary Reynolds
system (where t is only a parameter)

U0 =
1

2µ
(y − h−)(h+ − y)(f −∇x1

P 0) +
h+ − y

θ
s+ +

y − h−

θ
s−, (16)

− div
(

θ3(f −∇x1P 0)
)

= 6µ∇θ · (s+ + s−) in ωT , (17)

θ3(f −∇x1P 0) · n = 12µ

(
∫ h+

h−

g dy

)

· n− 6µθ(s+ + s−) · n on ∂ωT , (18)

where θ = h+ − h−. Then

uε

ε2
→ U0, pε → P 0 (L2(0, T ;L2)–2s).
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