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Explicit Stable Methods for the Initial Value

Problem for Second–Order Parabolic Systems∗
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Abstract. A class of numerical methods for ODE, which are explicit, absolutely stable,

and of any order of convergence, is constructed. Methods can be efficiently applied to those

initial value problems for the second-order parabolic system which have solutions with finite

L1–norms. Numerical procedure consists of two basic steps. The space discretizations of

elliptic operator must have compartmental structure, and the resulting ODE are solved by

constructed numerical methods.
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1. Introduction

A class of numerical methods for the initial value problem for the second-order
parabolic system is proposed and analyzed. Methods are explicit, unconditionally
stable, and of any convergence order. These methods are applicable only to initial value
problems for the second-order parabolic systems with L1–solutions. In this article
the case of parabolic systems on R

d is considered, although methods are applicable
to problems on bounded domains, as well. The crucial step of the construction is
the space discretization of elliptic operator, so that its matrix approximations have
the compartmental structure. In this way, the initial problem is approximated by a
sequence of ordinary differential equations (ODE). Once the compartmental structure
of approximations is gained, methods are defined by approximating the evolution
operators of ODE in terms of rational functions with positive terms. The numerator
is a polynomial of nonnegative matrix-valued functions with positive coefficients, and
the denominator is the corresponding polynomial of l1-norms. In turn, such a form of
expressions ensures unconditional stability of approximations.

In the second section the mentioned class of methods for ODE is constructed and
error bounds are obtained. The basic results for this class of methods are described
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in Proposition 1. In the third section an algorithm for nonhomogeneous ODE is
described. Finally, in the fourth section conditions on coefficients of elliptic operator
are given, ensuring solutions in L1(R

d). Then it is shown how finite element techniques
can be combined with the developed methods for ODE in order to numerically solve
second-order parabolic systems.

2. A class of explicit and stable methods for homogeneous ODE

A class of numerical schemes for the initial value problem for a system of ODE is
considered in this section. The system is defined by

d

dt
v(t) = A(t)v(t), v(0) = v0, (1)

where v(·), f(·) are column-valued functions on [0,∞) of a finite or infinite dimension.
Obviously, the column v0 has the same dimension. The index set of their elements is
denoted by J . The matrix-valued function A(·) must have a particular structure.

Assumption 1. The matrix-valued function A(·) = {aij(·)}J×J , indexed by the set J ,
has continuous matrix elements on [0,∞), with the following properties:

(a) aii(t) ≤ 0, for all i ∈ J , t ≥ 0,

(b) aij(t) ≥ 0, for all i, j ∈ J , i 6= j, t ≥ 0,

(c) aj(t) =
∑

i aij(t) ≤ 0, for all j ∈ J , t ≥ 0.

A matrix with prescribed properties is called a matrix with the compartmental
structure. If the functions aj are zero for all j ∈ J , the matrix-valued function A(·) is
called conservative. There is a simple result [3] concerning solutions of (1). Let q be a
positive and measurable function on [0,∞), bounded on bounded intervals of [0,∞),
such that |aii(t)| ≤ q(t). Then the matrix-valued function A(·) generates an evolution
family of matrices Q(t, s), t, s ∈ [0,∞), such that

‖Q(t, s)‖1 ≤ 1, 0 ≤ s ≤ t < ∞,

where ‖ · ‖1 is the l1-norm. In the case of conservative generator A(·), the equality
‖Q(t, s)‖1 = 1 is valid.

The matrix A(t) can be represented as A(t) = D(t) + B(t), where D(t) is a
diagonal matrix with diagonal elements aii(t), and B(t) is a matrix with nonnegative
off-diagonal elements and a zero diagonal. It is easy to describe schemes for matrices A
satisfying Assumption 1, and having all diagonal elements equal. First we consider the
case of t-independent matrices, so that aii = −p. Let τ be the increment in time, and
tm = mτ , m = 0, 1, . . . . Let vm be the approximations of v(tm). For t-independent
A, the approximations of order L are defined by:

vm = VL(τ)vm−1, m ∈ N, VL(τ) = PL(τ, p)
−1PL(τ, B),



Explicit Stable Methods for the Initial Value Problem for Second–Order Parabolic Systems 149

where the polynomial PL(τ, x), of order L, is equal to the first L + 1 terms of the

Taylor expansion of x 7→ exp(τx), i.e., PL(τ, x) =
∑L

r=0 τ
rxr/r! . The matrix l1-norm

of the numerator PL(τ, B) is not larger than the norm of the denominator, so that
‖VL(τ)‖1 ≤ exp(−κτ), where κ = infi |ai|. The order of convergence is L, as follows
from the corresponding local error bounds:

‖vm − v(tm)‖1 ≤ ‖VL(τ)‖1 ‖vm−1 − v(tm−1)‖1 +
2(pτ)L+1

(L + 1)!
‖v(tm−1)‖1.

If all ai = 0, then ‖vm‖1 = ‖v0‖1, m ∈ N. The matrix VL(τ) is obviously an approxi-
mation of Q(τ, 0) of the order L+ 1.

An extension to t-dependent matrices A(·) is simple. Let

A(t) = −p(t)I +B(t),

where both p, and the matrix elements of B, are smooth enough, so that integration
formulæ, to be used in the proceeding construction, have desired error bounds. Let
W (t, s) be the evolution family generated by B(·). The matrix Q(mτ, (m − 1)τ) is
approximated by a ratio, in which the numerator approximates W ((m−1)τ,mτ), and
the denominator approximates the corresponding function of p.

In the first step of the construction the numerator contains the first L+1 terms of
the expansion of W ((m−1)τ,mτ), and the denominator must contain the correspond-
ing L+ 1 terms of the expansion of the exponential function of the integral of p. The
so obtained numerator and denominator are denoted by ZL(τ,m,B) and ZL(τ,m, p),
respectively. In the second step of the construction each term of the expansion must be
approximated by an integration formula, with an error bound of the order L+1. The
so obtained numerator and denominator are denoted by XL(τ,m,B) and XL(τ,m, p),
respectively. The sequence

vm = VL(τ,m) vm−1, VL(τ,m) = XL(τ,m, p)−1XL(τ,m,B), (2)

obtained in this way, converges to the solution of (1) with the order L.

For low orders of convergence, integration formulæ are simple. The third-order
scheme is defined by the third-degree polynomial:

X3(τ,m, g) = 1 +
τ

6

[

g(tb) + 4g(tm) + g(te)
]

+
τ2

12

[

g(te)g(tb) + g(te)
2

+ 2g(tm)2 + 2g(tm)g(tb)
]

+
τ3

6
g(te)g(tm)g(tb), (3)

where tb, tm and te denote the beginning, midpoint and endpoint of the interval
[(m− 1)τ,mτ ], respectively. In order to apply the scheme to noncommuting matrices
B(t), t ∈ [0,∞), the order of factors B(t) must be respected.

If the diagonal elements (functions) aii of A are not mutually equal, the proposed
schemes can be used after a slight adjustment. Let [0, T ] be the interval of interest.
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It is assumed that there exists a continuous function p on the considered interval such
that p(t) ≥ −aii(t) for all i, and t ∈ [0, T ]. After splitting A(t) = −p(t)I + B(t),
the proposed schemes can be used. Obviously, the matrix-valued function B(·) has
nontrivial diagonal elements. It is clear that the optimal error is achieved by choosing
the function p as small as possible. Apparently, the best estimate is obtained when
all the diagonal elements are mutually equal.

In order to obtain optimal application of integration formulæ in the scheme (2),
it is useful to assume that the following error estimates are valid:

sup
0≤m≤K

|ZL(τ,m, p)−XL(τ,m, p)| ≤ τL+1α(L, p),

sup
0≤m≤K

‖ZL(τ,m,B)−XL(τ,m,B)‖1 ≤ τL+1β(L,B),

where the error bounds α and β are τ -independent. It has to be pointed out that the
error bounds α and β are equal to zero for t-independent matrices A.

To write expressions as briefly as possible, we use the following notation:

|p|T = sup{|p(t)| | t ∈ [0, T ]}, µT = inf{|p(t)| | t ∈ [0, T ]}.

Apart from this, we need a magnitude of oscillation over intervals I(r) = [(r−1)τ, rτ ],

|∆p|T = max
r≤K

{

max{p(t) | t ∈ I(r)} −min{p(t) | t ∈ I(r)}
}

,

where T = Kτ . The convergence of numerical schemes (2) to solutions of (1) is
described by the next result.

Proposition 1. Let the interval [0, T ] be discretized by tk = kτ , k = 0, 1, . . . ,K,
where τ = T/K.

(i) Then ‖VL(τ,m)‖1 ≤ 1, and ‖VL(τ,m)‖1 = 1 for conservative A(·).

(ii) Let Q(t, s) be the evolution family associated with (1). Then

‖Q(T, 0)− VL(τ,K)VL(τ,K − 1) · · ·VL(τ, 1)‖1

≤ τL
2T |p|L+1

T

(L + 1)!
exp(τ |∆p|T ) + τL

T (α(L, p) + β(L,B))

exp(τµT )
.

An implementation of the method (2) is actually reduced to an efficient implemen-
tation of the multiplication of a matrix with a column. This fact must be manifested
as an advantage for problems with sparse stiffness matrices having a larger band, as
demonstrated in the second example.

Example 1. To demonstrate the method, the initial value problem (1) is solved with
the t-independent matrix A = −2I + I+ + I−, of the order n = 10000, where I± are
the first off-diagonals. The problem is solved numerically on the interval [0, 1] with the
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time increment τ = 10−3. We compare the method (2), by using the scheme (3) with
L = 3, and implicit Euler’s method. The method (2) is slightly faster and the ratio of
computing times is 0.73.

Example 2. Consider the parabolic initial value problem with the elliptic operator
A = (σ2/2)∆ on D = (0, 1)× (0, 1), and the homogeneous Dirichlet boundary condi-
tions. The exact solution of this problem is

u(t, x1, x2) = exp(−π2σ2t) sin(πx1) sin(πx2).

In this example we take σ2 = 0.1/π2 and T = 1. This boundary value problem is
numerically approximated in the usual way by choosing the grid step h = 2−6. The
resulting ODE (1) is solved by the method (2) with L = 3, i.e., (3), and implicit Euler’s
method, with various time increments τ = 1/K, K = 100, 300, 500. Algebraic systems
with band matrices, appearing in Euler’s method, are solved by Gaussian eliminations
without pivoting. All calculations were carried out in double precision, with the same
level of optimization, on SUN–SPARC (Ultra–Enterprise) computer. The ratios of
computing times for the two methods are given in Table 1. The error bounds ε(3, τ)
between exact and approximate solutions are also given in the last row of the table.

K 100 300 500

time (scheme (3))

time (Euler’s method)
1.29e−03 1.33e−03 0.34e−03

ε(3, τ) 0.2208e+00 0.4670e−02 0.9019e−03

Table 1. Ratio of computing times.

Apparently, the efficiency of the method (3) is emphasized when applied to
parabolic systems with space dimension higher than 1.

3. Nonhomogeneous ODE

Now we consider the system

d

dt
v(t) = A(t)v(t) + f(t), v(0) = v0, (4)

and describe a second-order method, based on the constructed methods of Section 2,
which can be efficiently used to solve nonhomogeneous ODE. The solution of (4) has
the form

v(T ) = Q(T, 0)v0 +

∫ T

0

Q(T, s)f(s) ds.

The objective is a numerical approximation of the second term on the right-hand side:

u(T ) =

∫ T

0

Q(T, s)f(s) ds =
K
∑

k=1

∫ kτ

(k−1)τ

Q(T, s)f(s) ds. (5)
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Only the second-order convergence is discussed here. In the first step of the construc-
tion the interval [0, T ] is divided into K subintervals of the length τ . The points of
subdivision are denoted by tk = kτ , k = 0, 1, . . . ,K. Then the trapezoidal rule is
used at each subinterval to approximate integrals in (5) by sums. In the second step,
the matrices U(T, kτ) are approximated by products of VL(τ, k), where L ≥ 2. The
obtained expression approximating (5) has the form:

uapp(T ) =
τ

2
f(T ) + τVL(τ,K) f(T − τ) + τVL(τ,K)VL(τ,K − 1) f(T − 2τ)

+ · · ·+ τVL(τ,K)VL(τ,K − 1) · · ·VL(τ, 2) f(τ)

+
τ

2
VL(τ,K)VL(τ,K − 1) · · ·VL(τ, 1) f(0).

(6)

When the corresponding approximation of the first term in (4) is summed with the
obtained approximation of u(T ), we get a rule analogous to rules of linear one-step
methods. There are K steps of computation, as follows:

w(0) = v0 +
τ

2
f(0) → w(1) = VL(τ, 1)w(0)

w(1) + τf(τ) → w(2) = VL(τ, 2)
(

w(1) + τf(τ)
)

w(2) + τf(2τ) → w(3) = VL(τ, 3)
(

w(2) + τf(2τ)
)

· · · · · ·

w(K − 1) + τf(T − τ) → w(K) = VL(τ,K)
(

w(K − 1) + τf(T − τ)
)

w(K) +
τ

2
f(T ) → vapp(T ) = w(K) +

τ

2
f(T ).

Higher order approximations, with the same time increment τ , can be obtained
by using higher order integration formulæ, such as Simpson’s rule.

4. Initial value problem for parabolic systems

In order to apply the developed methods of Sections 2 and 3 to an initial value
problem for the second-order parabolic system, it is necessary to approximate the
parabolic system with ODE having the compartmental structure. The initial value
problem is considered on [0,∞)× R

d.

Let the measurable functions aij = aji, bi, i, j = 1, 2, . . . , d, and c be defined on
[0,∞)× R

d, and satisfy the following conditions: |bi|, |c| ≤ M , c ≤ 0,

M |z|22 ≥

d
∑

i,j=1

aij(t,x)ziz̄j ≥ µ|z|22, x ∈ R
d, t ≥ 0,

where M and µ are positive constants, zi are complex numbers, and |z|2 is the corre-
sponding l2-norm. The associated family of elliptic differential operators in divergence
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form

A(t,x) =
d

∑

i,j=1

∂iaij(t,x)∂j +
d

∑

j=1

∂jbj(t,x) + c(t,x), t ≥ 0, (7)

is considered on R
d. The second-order parabolic system is formally defined by

(

∂

∂t
−A(t)

)

u(t) = f(t), u(0) = u0. (8)

Let ‖ · ‖p denote the Lp(R
d)-norm and let (·|·) be the scalar product in L2(R

d). The
Sobolev space of functions on ET = (0, T )×R

d having one space derivative is denoted
by W 0,1

2 (ET ). The quadratic form on W 1
2 (R

d) defined by the elliptic operator (7)
is denoted by a(t, ·, ·). We assume that the functions bi, c are such that the form is
coercitive:

a(t, u, u) ≥ α

d
∑

i=1

‖∂iu‖
2
2, t ≥ 0,

for some α > 0. The variational formulation of (8) is defined by:

(

v(t)|u(t)
)

−

∫ t

0

(

v̇(s)|u(s)
)

ds+

∫ t

0

a(s, v(s), u(s)) ds

=
(

v(0)|u0

)

+

∫ t

0

(

v(s)|f(s)
)

ds, (9)

for any t ∈ (0, T ) and any v ∈ C1
0 ([0, T ],W

1
2 (R

d)). There exists a unique solution
of (9) in W 0,1

2 (ET ), such that t 7→ ‖u(t)‖2 is a continuous function on [0, T ] (see [2]).

Now we impose conditions on the coefficients of the elliptic operator in order to
get solutions in L1(R

d) [1]. Let the coefficients have the following representation:

aij(t,x) = âij(t,x) + δij , bi(t,x) = b̂i(t,x) + γi, i, j = 1, 2, . . . , d. (10)

Lemma 1. Let T > 0, u0 ∈ W 1
2 (R

d)∩L1(R
d) and f ∈ L2(ET )∩L1(ET ). Let aij(t),

bi(t) have the representation (10), where âij(t, ·), b̂i(t, ·) are elements of L2(R
d), uni-

formly with respect to t ∈ [0, T ]. Then

‖u(t)‖1 ≤ ‖u0‖1 + ‖f‖L1(ET ), for all t ∈ [0, T ].

The orthogonal coordinate system in R
d is determined by unit vectors ei. For

each n ∈ N, points x = h
∑d

l=1 klel, h = 2−n, kl ∈ Z, define a numerical grid Gn on
R

d. Elements of Gn are called grid knots. Let x 7→ φ(w,x) be basis functions centred
at grid knots w, having piecewise continuous first-order partial derivatives. Basis
functions span a linear space Ln ⊂ W 1

2 (R
2). When the variational formulation (9) is

applied to the linear spaces Ln the result is a sequence of ODE

d

dt
un(t) = An(t)un(t), un(0) = u0n, (11)
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defining numerical approximations of (9) of the following form

u(n, t,x) =
∑

wj

unj
(t)φ(wj ,x).

Numerical approximations u(n, t) ∈ W 0,1
2 (ET ) converge to the solution of (9) in

W 0,1
2 (ET ) for each T > 0. If in addition, the conditions of Lemma 1 are satisfied,

and An(t) have the compartmental structure, the convergence in L1(R
d) is also en-

sured.

Unfortunately, finite element techniques do not usually produce ODE with the
compartmental structure. In some cases, such as for Laplace operator, the corre-
sponding approximations An(t) have the compartmental structure. Only such cases
are considered here. The systems (11) can be solved by the method (2) in order to get
numerical approximations of un(tk) at a discrete sequence of times tk, k = 0, 1, . . . ,K.
Some advantages of this approach have already been discussed.

Numerical methods ensuring the compartmental structure for general cases are
described in [1].

5. Discussion

Although applicability and efficiency of methods of Section 2 have been demon-
strated only for parabolic systems on R

d with finite L1–norm solutions, the methods
can be applied to problems on bounded domains, as well. In the case of an initial
value problem for the second-order parabolic system on a bounded domain with ho-
mogeneous Dirichlet condition, the procedure of Section 4 can be straightforwardly
applied. In the case of other boundary conditions, the compartmental structure of
approximations An(t) must be ensured.

The assumption of finiteness of L1–norm of solution of the initial value problem
for the second-order parabolic system on R

d seems to be restrictive, while in the case
of bounded domains it seems to be superfluous.

Our intention was to develop methods for problems related to diffusion and derived
from diffusion, such as behaviour of probability distributions of Markov processes
generated by elliptic operators. In this way, approximations having the compartmental
structure are directly related to approximations of a Markov process (or/and diffusion)
by a sequence of Markov jump processes.
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