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Stable Algorithm for Calculating with q–Splines∗

Tina Bosner† and Mladen Rogina‡

Abstract. We are using a technique to calculate with Chebyshevian splines of order ≤ 4,

based on the known derivative formula for Chebyshevian splines and an Oslo type algorithm,

to produce simple formulæ for qB-splines developed by Kulkarni and Laurent. Starting with

the known fact that local basis for q-splines of order 3 and 4 can be evaluated by making

positive linear combinations of less smooth, one order higher polynomial B-splines, we deduce

a simple and stable algorithm for such splines.

It is an interesting fact in itself, that the coefficients in such linear combinations are

discrete Chebyshevian splines, and therefore make a partition of unity. The same is true for

qB-splines themselves.
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1. Introduction

The notion of q-spline has an origin in the beam theory. Consider a simply
supported beam with supports {(xi, fi)}

k+1
i=0 ; then the deflection of the beam between

successive supports is the solution s(x) to the differential equation [E · I ·D2]s = M .
Here E denotes Young’s modulus of elasticity, I is the cross-sectional moment of
inertia, and M is the bending moment. We suppose that E · I = 1/q, q > 0, where q
and, under assumption of weightlessness, M , are piecewise linear continuous functions
with break points at the supports. Differentiating the above equation twice, we arrive
at the two-point boundary value problem on [xi, xi+1], for i = 0, . . . , k:

D2 1

q
D2s = 0, s(xi) = fi, s(xi+1) = fi+1, s′′(xi) = s′′i , s(xi+1) = s′′i+1,

where s′′i and s′′i+1 are chosen so as to ensure that s ∈ C2[x0, xk+1]. Such a function s
is called a q-spline.

The aim is to construct a stable algorithm for calculating with q-splines , based on
the known derivative formula for Chebyshevian splines and an Oslo type algorithm. To
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this end, we will use one special Canonical Complete Chebyshev (CCT)–system, and
some general techniques from the Chebyshevian Spline Theory. Instead of calculating
directly with q-splines, we propose to write such splines as linear combinations of
locally supported ones, which can be expressed as linear combinations of ordinary
polynomial B-splines.

Since their introduction by Kulkarni and Laurent [2], q-splines have been used in
various applications in computer aided geometric design.

2. Chebyshev theory preliminaries

Let t1 ≤ t2 ≤ t3 ≤ a = t4 < t5 < · · · < tk+5 = b ≤ tk+6 ≤ tk+7 ≤ tk+8 be
an extended partition of the interval [a, b], and let q be a continuous, piecewise linear
function defined by

q(x)
∣∣
[ti,ti+1]

=
qi+1 − qi

hi

(x − ti) + qi,

where hi = ti+1 − ti, and qi > 0. Consider the CCT–system {u1, u2, u3, u4}:

u1(x) = 1,

u3(x) =

∫ x

a

ds2

∫ s2

a

q(s3) ds3,

u2(x) =

∫ x

a

ds2,

u4(x) =

∫ x

a

ds2

∫ s2

a

q(s3) ds3

∫ s3

a

ds4.

We wish to construct a local basis for the spline space spanned piecewisely by these
functions, that is, B-splines in S(4,m, dσ,∆), where m is the multiplicity vector ,
m = (1, . . . , 1)T , dσ := (ds2, q(s3) ds3, ds4)

T is the measure vector , and ∆ = {ti}
k+8
i=1

(see [5] for details of the notation). An important role is played by the associated
generalized derivatives:

L1,dσ = D, L2,dσ =
1

q
D2, L3,dσ = D

1

q
D2, L4,dσ = D2 1

q
D2.

To begin with, we focus on the reduced system {u1,1, u1,2, u1,3}, spanning the space
S(3,m, dσ(1),∆), dσ(1) = (q(s3) ds3, ds4)

T , on each interval. The CCT–system is:

u1,1(x) = 1, u1,2(x) =

∫ x

a

q(s3) ds3, u1,3(x) =

∫ x

a

q(s3) ds3

∫ s3

a

ds4. (1)

Next consider less smooth B-splines T̃ 3
j from the space S(3, m̃, dσ(1),∆), with the

multiplicity vector m̃ = (2, . . . , 2)T on the same knot sequence. For the fixed index
i, we denote the points in the new extended partition as ti = t̃r−1 = t̃r < t̃r+1,

and polynomial B-splines on this partition simply as B̃n
j . It is easily seen from the

definition of the basis (1) that we can write T̃ 3
j as

T̃ 3
r−1(x) =

s∑

j=s−3

ar−1,jB̂
4
j (x), (2)
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T̃ 3
r (x) =

s+3∑

j=s−3

ar,jB̂
4
j (x), (3)

with B̂4
j ∈ S(4, m̂, dλ,∆), where m̂ = (3, . . . , 3)T on the same knot sequence ∆,

and dλ is the measure vector determined by Lebesgue measures only. Points in this
partition will be denoted as ti = t̂s−2 = t̂s−1 = t̂s < t̂s+1.

We will use the following general theorem, which is a generalization to Chebyshe-
vian splines of the derivative formula for polynomial B-splines [1, 4]:

Theorem 1. Let L1,dσ be the first generalized derivative with respect to CCT–system

S(n, dσ), and let the multiplicity vector m = (m1, . . . ,mk)
T satisfy mi < n − 1 for

i = 1, . . . , k. Then for x ∈ [a, b] and i = 1, . . . , n+
∑k

i=1 mi, the following derivative

formula holds:

L1,dσ T n
i,dσ(x) =

T n−1
i,dσ(1)(x)

Cn−1(i)
−

T n−1
i+1,dσ(1)(x)

Cn−1(i+ 1)
, (4)

where

Cn−1(i) :=

∫ ti+n−1

ti

T n−1
i,dσ(1) dσ2, (5)

with measure vectors

dσ = (dσ2(δ), . . . , dσn(δ))
T ∈ R

n−1, dσ(1) := (dσ3(δ), . . . , dσn(δ))
T ∈ R

n−2,

for all measurable δ.

3. Construction of the local basis for q-spline spaces

It is obvious from (1) and Theorem 1 that

L̄1T̃
3
r−1(x) =

B̃2
r−1(x)

C̃2(r − 1)
−

B̃2
r (x)

C̃2(r)
,

where L̄1 := L1,dσ(1) = 1
q
D is the generalized derivative for the reduced CCT–system,

and

C̃2(j) =

∫ t̃j+2

t̃j

B̃2
j (t) q(t) dt.

In particular,

C̃2(r − 1) =
(2qi + qi+1)hi

6
, C̃2(r) =

(qi + 2qi+1)hi

6
.

From the simple properties of B-splines:

T̃ 3
r−1(ti) = 0,

T̃ 3
r−1(ti+1) = 0,

L̄1T̃
3
r−1(t

+
i ) =

1

C̃2(r − 1)
,

L̄1T̃
3
r−1(t

−

i+1) = −
1

C̃2(r)
,
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we get the coefficients in (2):

ar−1,s−3 = ar−1,s = 0,

ar−1,s−2 =
2qi

2qi + qi+1
, ar−1,s−1 =

2qi+1

qi + 2qi+1
,

whence

T̃ 3
r−1(x) =

2qi
2qi + qi+1

B̂4
s−2(x) +

2qi+1

qi + 2qi+1
B̂4

s−1(x). (6)

To calculate T̃ 3
r , we use the equations

T̃ 3
r (ti) = L̄1T̃

3
r (ti) = T̃ 3

r (ti+2) = L̄1T̃
3
r (ti+2) = 0,

T̃ 3
r (ti+1) = 1, L̄1T̃

3
r (t

−

i+1) =
1

C̃2(r)
, L̄1T̃

3
r (t

+
i+1) = −

1

C̃2(r + 1)
,

to get the coefficients in (3):

ar,s−3 = ar,s−2 = ar,s+2 = ar,s+3 = 0,

ar,s = 1, ar,s−1 =
qi

2qi+1 + qi
, ar,s+1 =

qi+2

2qi+1 + qi+2
,

and, finally

T̃ 3
r (x) =

qi
qi + 2qi+1

B̂4
s−1(x) + B̂4

s (x) +
qi+2

2qi+1 + qi+2
B̂4

s+1(x). (7)

By integrating (4) in Theorem 1, we can further calculate splines of higher order. We
start with the equation

T̃ 4
r−1(x) =

1

C̃3(r − 1)

∫ x

t̃r−1

T̃ 3
r−1(t) dt−

1

C̃3(r)

∫ x

t̃r

T̃ 3
r (t) dt. (8)

It is easy to see from (6) and (7) that

C̃3(r − 1) =
hi

4

[
2qi

2qi + qi+1
+

2qi+1

qi + 2qi+1

]
,

C̃3(r) =
1

4

[
qihi

qi + 2qi+1
+ hi + hi+1 +

qi+2hi+1

2qi+1 + qi+2

]
.

From (8), by using (6), (7), and the well known recurrence for integrals of the poly-
nomial B-splines

∫ x

−∞

Bn
i (t) dt =

ti+n − ti
n

i+n−1∑

j=i

Bn+1
j (x),
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where {ti} is now any extended partition, we obtain (by looking separately at x from
each of the subintervals [ti, ti+1] and [ti+1, ti+2]), that

T̃ 4
r−1(x) =

1

C̃3(r − 1)

2qi
2qi + qi+1

hi

4
B̂5

s−2(x)

+
1

C̃3(r)

(
hi + hi+1

4
+

qi+2

2qi+1 + qi+2

hi+1

4

)
B̂5

s−1(x)

+
1

C̃3(r)

qi+2

2qi+1 + qi+2

hi+1

4
B̂5

s (x).

In the same way,

T̃ 4
r (x) =

1

C̃3(r)

qi
qi + 2qi+1

hi

4
B̂5

s−1(x) +
1

C̃3(r)

(
qi

qi + 2qi+1

hi

4
+

hi + hi+1

4

)
B̂5

s (x)

+
1

C̃3(r + 1)

2qi+2

qi+1 + 2qi+2

hi+1

4
B̂5

s+1(x).

The following lemma and theorem are connecting general T-splines of orders 3
and 4 with less smooth ones, which are simpler to calculate, and (in the case of q-
splines) have already been constructed by the explicit formulæ. Proofs are omitted
and may be found in [4].

Lemma 1. Let T 3
i,dσ(1) ∈ S(3,m, dσ(1),∆) be a Chebyshevian B-spline of order 3 as-

sociated with the multiplicity vector m = (1, . . . , 1)T , and let us assume that T̃ 3
i,dσ(1) ∈

S(3, m̃, dσ(1),∆) are B-splines associated with multiplicity vector m̃ = (2, . . . , 2)T

on the same knot sequence. If {t1, . . . , tk+6} and {t̃1, . . . , t̃2k+6} are the associated

extended partitions, and r an index such that ti = t̃r < t̃r+1, then for i = 1, . . . , k+3:

T 3
i,dσ(1) = T 3

i,dσ(1)(ti+1) T̃
3
r,dσ(1) + T̃ 3

r+1,dσ(1) + T 3
i,dσ(1)(ti+2) T̃

3
r+2,dσ(1) .

Theorem 2. Let T 4
i,dσ ∈ S(4,m, dσ,∆), T̃ 4

i,dσ ∈ S(4, m̃, dσ,∆), the multiplicity vec-

tors m, m̃ being as in Lemma 1. Then positive δ4i (j) exist such that

T 4
i,dσ =

r+3∑

j=r

δ4i (j) T̃
4
j,dσ,

where r = ri satisfies ti = t̃ri < t̃ri+1. Let the extended partitions be {t1, . . . , tk+8}
and {t̃1, . . . , t̃2k+8}. Then δ4i (j), j = r, . . . , r + 3, are determined by the formulæ:

δ4i (r) =
T 3
i,dσ(1)(ti+1) C̃(r)

T 3
i,dσ(1)(ti+1) C̃(r) + C̃(r + 1) + T 3

i,dσ(1)(ti+2) C̃(r + 2)
,

δ4i (r + 1) =
T 3
i,dσ(1)(ti+1) C̃(r) + C̃(r + 1)

T 3
i,dσ(1)(ti+1) C̃(r) + C̃(r + 1) + T 3

i,dσ(1)(ti+2) C̃(r + 2)
,



104 T. Bosner and M. Rogina

δ4i (r + 2) =
T 3
i+1,dσ(1)(ti+3) C̃(r + 4) + C̃(r + 3)

T 3
i+1,dσ(1)(ti+2) C̃(r + 2) + C̃(r + 3) + T 3

i+1,dσ(1)(ti+3) C̃(r + 4)
,

δ4i (r + 3) =
T 3
i+1,dσ(1)(ti+3) C̃(r + 4)

T 3
i+1,dσ(1)(ti+2) C̃(r + 2) + C̃(r + 3) + T 3

i+1,dσ(1)(ti+3) C̃(r + 4)
,

where, as in (5)

C̃(i) =

∫

supp

T̃ 3
i,dσ(1) dσ2.

To use Lemma 1 and Theorem 2, it remains to calculate T 3
i (ti+1) and T 3

i (ti+2).
The derivative formula in Theorem 1 implies

T 3
i (x) =

1

C2(i)

∫ x

ti

B2
i (t) q(t) dt−

1

C2(i+ 1)

∫ x

ti+1

B2
i+1(t) q(t) dt,

where

C2(i) =

∫ ti+2

ti

B2
i (t) q(t) dt =

1

6

[
(qi + 2qi+1)hi + (2qi+1 + qi+2)hi+1

]
.

One finds easily that

T 3
i (ti+1) =

hi(qi + 2qi+1)

6C2(i)
, T 3

i (ti+2) =
hi+2(2qi+2 + qi+3)

6C2(i + 1)
,

and we have everything that is needed for the evaluation of T 4
i by means of Theorem 2.

4. Conclusion

We have constructed formulæ for calculating with q-splines as linear combinations
of polynomial B-splines. Moreover, all the coefficients involved are positive, and thus
we have to calculate scalar products of positive quantities only, guaranteeing numerical
stability of such an algorithm.
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