Stable Algorithm for Calculating with \boldsymbol{q}-Splines*

Tina Bosner † and Mladen Rogina ${ }^{\ddagger}$

Abstract

We are using a technique to calculate with Chebyshevian splines of order ≤ 4, based on the known derivative formula for Chebyshevian splines and an Oslo type algorithm, to produce simple formulæ for $q \mathrm{~B}$-splines developed by Kulkarni and Laurent. Starting with the known fact that local basis for q-splines of order 3 and 4 can be evaluated by making positive linear combinations of less smooth, one order higher polynomial B-splines, we deduce a simple and stable algorithm for such splines.

It is an interesting fact in itself, that the coefficients in such linear combinations are discrete Chebyshevian splines, and therefore make a partition of unity. The same is true for $q \mathrm{~B}$-splines themselves.

AMS subject classification: 65D07, 41A50
Key words: Chebyshev spline, q-spline, knot insertion

1. Introduction

The notion of q-spline has an origin in the beam theory. Consider a simply supported beam with supports $\left\{\left(x_{i}, f_{i}\right)\right\}_{i=0}^{k+1}$; then the deflection of the beam between successive supports is the solution $s(x)$ to the differential equation $\left[E \cdot I \cdot D^{2}\right] s=M$. Here E denotes Young's modulus of elasticity, I is the cross-sectional moment of inertia, and M is the bending moment. We suppose that $E \cdot I=1 / q, q>0$, where q and, under assumption of weightlessness, M, are piecewise linear continuous functions with break points at the supports. Differentiating the above equation twice, we arrive at the two-point boundary value problem on $\left[x_{i}, x_{i+1}\right]$, for $i=0, \ldots, k$:

$$
D^{2} \frac{1}{q} D^{2} s=0, \quad s\left(x_{i}\right)=f_{i}, \quad s\left(x_{i+1}\right)=f_{i+1}, \quad s^{\prime \prime}\left(x_{i}\right)=s_{i}^{\prime \prime}, \quad s\left(x_{i+1}\right)=s_{i+1}^{\prime \prime},
$$

where $s_{i}^{\prime \prime}$ and $s_{i+1}^{\prime \prime}$ are chosen so as to ensure that $s \in C^{2}\left[x_{0}, x_{k+1}\right]$. Such a function s is called a q-spline.

The aim is to construct a stable algorithm for calculating with q-splines, based on the known derivative formula for Chebyshevian splines and an Oslo type algorithm. To

[^0]this end, we will use one special Canonical Complete Chebyshev (CCT)-system, and some general techniques from the Chebyshevian Spline Theory. Instead of calculating directly with q-splines, we propose to write such splines as linear combinations of locally supported ones, which can be expressed as linear combinations of ordinary polynomial B-splines.

Since their introduction by Kulkarni and Laurent [2], q-splines have been used in various applications in computer aided geometric design.

2. Chebyshev theory preliminaries

Let $t_{1} \leq t_{2} \leq t_{3} \leq a=t_{4}<t_{5}<\cdots<t_{k+5}=b \leq t_{k+6} \leq t_{k+7} \leq t_{k+8}$ be an extended partition of the interval $[a, b]$, and let q be a continuous, piecewise linear function defined by

$$
\left.q(x)\right|_{\left[t_{i}, t_{i+1}\right]}=\frac{q_{i+1}-q_{i}}{h_{i}}\left(x-t_{i}\right)+q_{i}
$$

where $h_{i}=t_{i+1}-t_{i}$, and $q_{i}>0$. Consider the CCT-system $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$:

$$
\begin{aligned}
u_{1}(x) & =1, & u_{2}(x) & =\int_{a}^{x} d s_{2} \\
u_{3}(x) & =\int_{a}^{x} d s_{2} \int_{a}^{s_{2}} q\left(s_{3}\right) d s_{3}, & u_{4}(x) & =\int_{a}^{x} d s_{2} \int_{a}^{s_{2}} q\left(s_{3}\right) d s_{3} \int_{a}^{s_{3}} d s_{4}
\end{aligned}
$$

We wish to construct a local basis for the spline space spanned piecewisely by these functions, that is, B-splines in $\mathcal{S}(4, \mathbf{m}, d \boldsymbol{\sigma}, \Delta)$, where \mathbf{m} is the multiplicity vector, $\mathbf{m}=(1, \ldots, 1)^{T}, d \boldsymbol{\sigma}:=\left(d s_{2}, q\left(s_{3}\right) d s_{3}, d s_{4}\right)^{T}$ is the measure vector, and $\Delta=\left\{t_{i}\right\}_{i=1}^{k+8}$ (see [5] for details of the notation). An important role is played by the associated generalized derivatives:

$$
L_{1, d \boldsymbol{\sigma}}=D, \quad L_{2, d \boldsymbol{\sigma}}=\frac{1}{q} D^{2}, \quad L_{3, d \boldsymbol{\sigma}}=D \frac{1}{q} D^{2}, \quad L_{4, d \boldsymbol{\sigma}}=D^{2} \frac{1}{q} D^{2} .
$$

To begin with, we focus on the reduced system $\left\{u_{1,1}, u_{1,2}, u_{1,3}\right\}$, spanning the space $\mathcal{S}\left(3, \mathbf{m}, d \boldsymbol{\sigma}^{(1)}, \Delta\right), d \boldsymbol{\sigma}^{(1)}=\left(q\left(s_{3}\right) d s_{3}, d s_{4}\right)^{T}$, on each interval. The CCT-system is:

$$
\begin{equation*}
u_{1,1}(x)=1, \quad u_{1,2}(x)=\int_{a}^{x} q\left(s_{3}\right) d s_{3}, \quad u_{1,3}(x)=\int_{a}^{x} q\left(s_{3}\right) d s_{3} \int_{a}^{s_{3}} d s_{4} . \tag{1}
\end{equation*}
$$

Next consider less smooth B-splines \widetilde{T}_{j}^{3} from the space $\mathcal{S}\left(3, \widetilde{\mathbf{m}}, d \boldsymbol{\sigma}^{(1)}, \Delta\right)$, with the multiplicity vector $\widetilde{\mathbf{m}}=(2, \ldots, 2)^{T}$ on the same knot sequence. For the fixed index i, we denote the points in the new extended partition as $t_{i}=\tilde{t}_{r-1}=\tilde{t}_{r}<\tilde{t}_{r+1}$, and polynomial B-splines on this partition simply as \widetilde{B}_{j}^{n}. It is easily seen from the definition of the basis (1) that we can write \widetilde{T}_{j}^{3} as

$$
\begin{equation*}
\widetilde{T}_{r-1}^{3}(x)=\sum_{j=s-3}^{s} a_{r-1, j} \widehat{B}_{j}^{4}(x), \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{T}_{r}^{3}(x)=\sum_{j=s-3}^{s+3} a_{r, j} \widehat{B}_{j}^{4}(x) \tag{3}
\end{equation*}
$$

with $\widehat{B}_{j}^{4} \in \mathcal{S}(4, \widehat{\mathbf{m}}, d \boldsymbol{\lambda}, \Delta)$, where $\widehat{\mathbf{m}}=(3, \ldots, 3)^{T}$ on the same knot sequence Δ, and $d \boldsymbol{\lambda}$ is the measure vector determined by Lebesgue measures only. Points in this partition will be denoted as $t_{i}=\hat{t}_{s-2}=\hat{t}_{s-1}=\hat{t}_{s}<\hat{t}_{s+1}$.

We will use the following general theorem, which is a generalization to Chebyshevian splines of the derivative formula for polynomial B-splines $[1,4]$:

Theorem 1. Let $L_{1, d \boldsymbol{\sigma}}$ be the first generalized derivative with respect to $C C T-$ system $\mathcal{S}(n, d \boldsymbol{\sigma})$, and let the multiplicity vector $\mathbf{m}=\left(m_{1}, \ldots, m_{k}\right)^{T}$ satisfy $m_{i}<n-1$ for $i=1, \ldots, k$. Then for $x \in[a, b]$ and $i=1, \ldots, n+\sum_{i=1}^{k} m_{i}$, the following derivative formula holds:

$$
\begin{equation*}
L_{1, d \boldsymbol{\sigma}} T_{i, d \boldsymbol{\sigma}}^{n}(x)=\frac{T_{i, d \boldsymbol{\sigma}^{(1)}}^{n-1}(x)}{C_{n-1}(i)}-\frac{T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{n-1}(x)}{C_{n-1}(i+1)} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n-1}(i):=\int_{t_{i}}^{t_{i+n-1}} T_{i, d \boldsymbol{\sigma}^{(1)}}^{n-1} d \sigma_{2} \tag{5}
\end{equation*}
$$

with measure vectors

$$
d \boldsymbol{\sigma}=\left(d \sigma_{2}(\delta), \ldots, d \sigma_{n}(\delta)\right)^{T} \in \mathbb{R}^{n-1}, \quad d \boldsymbol{\sigma}^{(1)}:=\left(d \sigma_{3}(\delta), \ldots, d \sigma_{n}(\delta)\right)^{T} \in \mathbb{R}^{n-2}
$$

for all measurable δ.

3. Construction of the local basis for q-spline spaces

It is obvious from (1) and Theorem 1 that

$$
\bar{L}_{1} \widetilde{T}_{r-1}^{3}(x)=\frac{\widetilde{B}_{r-1}^{2}(x)}{\widetilde{C}_{2}(r-1)}-\frac{\widetilde{B}_{r}^{2}(x)}{\widetilde{C}_{2}(r)}
$$

where $\bar{L}_{1}:=L_{1, d \boldsymbol{\sigma}^{(1)}}=\frac{1}{q} D$ is the generalized derivative for the reduced CCT-system, and

$$
\widetilde{C}_{2}(j)=\int_{\tilde{t}_{j}}^{\tilde{t}_{j+2}} \widetilde{B}_{j}^{2}(t) q(t) d t
$$

In particular,

$$
\widetilde{C}_{2}(r-1)=\frac{\left(2 q_{i}+q_{i+1}\right) h_{i}}{6}, \quad \widetilde{C}_{2}(r)=\frac{\left(q_{i}+2 q_{i+1}\right) h_{i}}{6}
$$

From the simple properties of B-splines:

$$
\begin{gathered}
\widetilde{T}_{r-1}^{3}\left(t_{i}\right)=0, \\
\bar{L}_{1} \widetilde{T}_{r-1}^{3}\left(t_{i}^{+}\right)=\frac{1}{\widetilde{C}_{2}(r-1)} \\
\widetilde{T}_{r-1}^{3}\left(t_{i+1}\right)=0, \\
\bar{L}_{1} \widetilde{T}_{r-1}^{3}\left(t_{i+1}^{-}\right)=-\frac{1}{\widetilde{C}_{2}(r)}
\end{gathered}
$$

we get the coefficients in (2):

$$
\begin{gathered}
a_{r-1, s-3}=a_{r-1, s}=0 \\
a_{r-1, s-2}=\frac{2 q_{i}}{2 q_{i}+q_{i+1}}, \quad a_{r-1, s-1}=\frac{2 q_{i+1}}{q_{i}+2 q_{i+1}},
\end{gathered}
$$

whence

$$
\begin{equation*}
\widetilde{T}_{r-1}^{3}(x)=\frac{2 q_{i}}{2 q_{i}+q_{i+1}} \widehat{B}_{s-2}^{4}(x)+\frac{2 q_{i+1}}{q_{i}+2 q_{i+1}} \widehat{B}_{s-1}^{4}(x) . \tag{6}
\end{equation*}
$$

To calculate \widetilde{T}_{r}^{3}, we use the equations

$$
\begin{gathered}
\widetilde{T}_{r}^{3}\left(t_{i}\right)=\bar{L}_{1} \widetilde{T}_{r}^{3}\left(t_{i}\right)=\widetilde{T}_{r}^{3}\left(t_{i+2}\right)=\bar{L}_{1} \widetilde{T}_{r}^{3}\left(t_{i+2}\right)=0 \\
\widetilde{T}_{r}^{3}\left(t_{i+1}\right)=1, \quad \bar{L}_{1} \widetilde{T}_{r}^{3}\left(t_{i+1}^{-}\right)=\frac{1}{\widetilde{C}_{2}(r)}, \quad \bar{L}_{1} \widetilde{T}_{r}^{3}\left(t_{i+1}^{+}\right)=-\frac{1}{\widetilde{C}_{2}(r+1)},
\end{gathered}
$$

to get the coefficients in (3):

$$
\begin{gathered}
a_{r, s-3}=a_{r, s-2}=a_{r, s+2}=a_{r, s+3}=0 \\
a_{r, s}=1, \quad a_{r, s-1}=\frac{q_{i}}{2 q_{i+1}+q_{i}}, \quad a_{r, s+1}=\frac{q_{i+2}}{2 q_{i+1}+q_{i+2}},
\end{gathered}
$$

and, finally

$$
\begin{equation*}
\widetilde{T}_{r}^{3}(x)=\frac{q_{i}}{q_{i}+2 q_{i+1}} \widehat{B}_{s-1}^{4}(x)+\widehat{B}_{s}^{4}(x)+\frac{q_{i+2}}{2 q_{i+1}+q_{i+2}} \widehat{B}_{s+1}^{4}(x) . \tag{7}
\end{equation*}
$$

By integrating (4) in Theorem 1, we can further calculate splines of higher order. We start with the equation

$$
\begin{equation*}
\widetilde{T}_{r-1}^{4}(x)=\frac{1}{\widetilde{C}_{3}(r-1)} \int_{\tilde{t}_{r-1}}^{x} \widetilde{T}_{r-1}^{3}(t) d t-\frac{1}{\widetilde{C}_{3}(r)} \int_{\tilde{t}_{r}}^{x} \widetilde{T}_{r}^{3}(t) d t . \tag{8}
\end{equation*}
$$

It is easy to see from (6) and (7) that

$$
\begin{aligned}
\widetilde{C}_{3}(r-1) & =\frac{h_{i}}{4}\left[\frac{2 q_{i}}{2 q_{i}+q_{i+1}}+\frac{2 q_{i+1}}{q_{i}+2 q_{i+1}}\right] \\
\widetilde{C}_{3}(r) & =\frac{1}{4}\left[\frac{q_{i} h_{i}}{q_{i}+2 q_{i+1}}+h_{i}+h_{i+1}+\frac{q_{i+2} h_{i+1}}{2 q_{i+1}+q_{i+2}}\right] .
\end{aligned}
$$

From (8), by using (6), (7), and the well known recurrence for integrals of the polynomial B-splines

$$
\int_{-\infty}^{x} B_{i}^{n}(t) d t=\frac{t_{i+n}-t_{i}}{n} \sum_{j=i}^{i+n-1} B_{j}^{n+1}(x)
$$

where $\left\{t_{i}\right\}$ is now any extended partition, we obtain (by looking separately at x from each of the subintervals $\left[t_{i}, t_{i+1}\right]$ and $\left.\left[t_{i+1}, t_{i+2}\right]\right)$, that

$$
\begin{aligned}
\widetilde{T}_{r-1}^{4}(x)= & \frac{1}{\widetilde{C}_{3}(r-1)} \frac{2 q_{i}}{2 q_{i}+q_{i+1}} \frac{h_{i}}{4} \widehat{B}_{s-2}^{5}(x) \\
& +\frac{1}{\widetilde{C}_{3}(r)}\left(\frac{h_{i}+h_{i+1}}{4}+\frac{q_{i+2}}{2 q_{i+1}+q_{i+2}} \frac{h_{i+1}}{4}\right) \widehat{B}_{s-1}^{5}(x) \\
& +\frac{1}{\widetilde{C}_{3}(r)} \frac{q_{i+2}}{2 q_{i+1}+q_{i+2}} \frac{h_{i+1}}{4} \widehat{B}_{s}^{5}(x) .
\end{aligned}
$$

In the same way,

$$
\begin{aligned}
\widetilde{T}_{r}^{4}(x)= & \frac{1}{\widetilde{C}_{3}(r)} \frac{q_{i}}{q_{i}+2 q_{i+1}} \frac{h_{i}}{4} \widehat{B}_{s-1}^{5}(x)+\frac{1}{\widetilde{C}_{3}(r)}\left(\frac{q_{i}}{q_{i}+2 q_{i+1}} \frac{h_{i}}{4}+\frac{h_{i}+h_{i+1}}{4}\right) \widehat{B}_{s}^{5}(x) \\
& \quad+\frac{1}{\widetilde{C}_{3}(r+1)} \frac{2 q_{i+2}}{q_{i+1}+2 q_{i+2}} \frac{h_{i+1}}{4} \widehat{B}_{s+1}^{5}(x) .
\end{aligned}
$$

The following lemma and theorem are connecting general T-splines of orders 3 and 4 with less smooth ones, which are simpler to calculate, and (in the case of q splines) have already been constructed by the explicit formulæ. Proofs are omitted and may be found in [4].
Lemma 1. Let $T_{i, d \boldsymbol{\sigma}^{(1)}}^{3} \in \mathcal{S}\left(3, \mathbf{m}, d \boldsymbol{\sigma}^{(1)}, \Delta\right)$ be a Chebyshevian B-spline of order 3 associated with the multiplicity vector $\mathbf{m}=(1, \ldots, 1)^{T}$, and let us assume that $\widetilde{T}_{i, d \boldsymbol{\sigma}^{(1)}}^{3} \in$ $\mathcal{S}\left(3, \widetilde{\mathbf{m}}, d \boldsymbol{\sigma}^{(1)}, \Delta\right)$ are B-splines associated with multiplicity vector $\widetilde{\mathbf{m}}=(2, \ldots, 2)^{T}$ on the same knot sequence. If $\left\{t_{1}, \ldots, t_{k+6}\right\}$ and $\left\{\tilde{t}_{1}, \ldots, \tilde{t}_{2 k+6}\right\}$ are the associated extended partitions, and r an index such that $t_{i}=\tilde{t}_{r}<\tilde{t}_{r+1}$, then for $i=1, \ldots, k+3$:

$$
T_{i, d \boldsymbol{\sigma}^{(1)}}^{3}=T_{i, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+1}\right) \widetilde{T}_{r, d \boldsymbol{\sigma}^{(1)}}^{3}+\widetilde{T}_{r+1, d \boldsymbol{\sigma}^{(1)}}^{3}+T_{i, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+2}\right) \widetilde{T}_{r+2, d \boldsymbol{\sigma} \boldsymbol{\sigma}^{(1)}}^{3}
$$

Theorem 2. Let $T_{i, d \boldsymbol{\sigma}}^{4} \in \mathcal{S}(4, \mathbf{m}, d \boldsymbol{\sigma}, \Delta), \widetilde{T}_{i, d \boldsymbol{\sigma}}^{4} \in \mathcal{S}(4, \widetilde{\mathbf{m}}, d \boldsymbol{\sigma}, \Delta)$, the multiplicity vectors $\mathbf{m}, \widetilde{\mathbf{m}}$ being as in Lemma 1. Then positive $\delta_{i}^{4}(j)$ exist such that

$$
T_{i, d \boldsymbol{\sigma}}^{4}=\sum_{j=r}^{r+3} \delta_{i}^{4}(j) \widetilde{T}_{j, d \boldsymbol{\sigma}}^{4}
$$

where $r=r_{i}$ satisfies $t_{i}=\tilde{t}_{r_{i}}<\tilde{t}_{r_{i}+1}$. Let the extended partitions be $\left\{t_{1}, \ldots, t_{k+8}\right\}$ and $\left\{\tilde{t}_{1}, \ldots, \tilde{t}_{2 k+8}\right\}$. Then $\delta_{i}^{4}(j), j=r, \ldots, r+3$, are determined by the formula:

$$
\begin{aligned}
& \delta_{i}^{4}(r)=\frac{T_{i, d \boldsymbol{\sigma}}(1)}{3}\left(t_{i+1}\right) \widetilde{C}(r) \\
& T_{i, d \boldsymbol{\boldsymbol { \sigma } ^ { (1) }}}^{3}\left(t_{i+1}\right) \widetilde{C}(r)+\widetilde{C}(r+1)+T_{i, d \boldsymbol{\sigma}}(1) \\
& \delta_{i}^{4}\left(t_{i+2}\right) \widetilde{C}(r+2)
\end{aligned},
$$

$$
\begin{aligned}
\delta_{i}^{4}(r+2) & =\frac{T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+3}\right) \widetilde{C}(r+4)+\widetilde{C}(r+3)}{T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+2}\right) \widetilde{C}(r+2)+\widetilde{C}(r+3)+T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+3}\right) \widetilde{C}(r+4)}, \\
\delta_{i}^{4}(r+3) & =\frac{T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+3}\right) \widetilde{C}(r+4)}{T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+2}\right) \widetilde{C}(r+2)+\widetilde{C}(r+3)+T_{i+1, d \boldsymbol{\sigma}^{(1)}}^{3}\left(t_{i+3}\right) \widetilde{C}(r+4)},
\end{aligned}
$$

where, as in (5)

$$
\widetilde{C}(i)=\int_{\text {supp }} \widetilde{T}_{i, d \boldsymbol{\sigma}^{(1)}}^{3} d \sigma_{2}
$$

To use Lemma 1 and Theorem 2, it remains to calculate $T_{i}^{3}\left(t_{i+1}\right)$ and $T_{i}^{3}\left(t_{i+2}\right)$. The derivative formula in Theorem 1 implies

$$
T_{i}^{3}(x)=\frac{1}{C_{2}(i)} \int_{t_{i}}^{x} B_{i}^{2}(t) q(t) d t-\frac{1}{C_{2}(i+1)} \int_{t_{i+1}}^{x} B_{i+1}^{2}(t) q(t) d t
$$

where

$$
C_{2}(i)=\int_{t_{i}}^{t_{i+2}} B_{i}^{2}(t) q(t) d t=\frac{1}{6}\left[\left(q_{i}+2 q_{i+1}\right) h_{i}+\left(2 q_{i+1}+q_{i+2}\right) h_{i+1}\right]
$$

One finds easily that

$$
T_{i}^{3}\left(t_{i+1}\right)=\frac{h_{i}\left(q_{i}+2 q_{i+1}\right)}{6 C_{2}(i)}, \quad T_{i}^{3}\left(t_{i+2}\right)=\frac{h_{i+2}\left(2 q_{i+2}+q_{i+3}\right)}{6 C_{2}(i+1)},
$$

and we have everything that is needed for the evaluation of T_{i}^{4} by means of Theorem 2.

4. Conclusion

We have constructed formulæ for calculating with q-splines as linear combinations of polynomial B-splines. Moreover, all the coefficients involved are positive, and thus we have to calculate scalar products of positive quantities only, guaranteeing numerical stability of such an algorithm.

References

[1] D. Bister and H. Prautzsch, A new approach to Tchebycheffian B-splines, in Curves and Surfaces with Applications in CAGD, A. Le Méhauté, C. Rabut, and L. L. Schumaker, eds., Vanderbilt Univ. Press, 1997, pp. 35-43.
[2] R. Kulkarni and P.--J. Laurent, Q-splines, Numer. Algorithms, 1 (1991), pp. 45-73.
[3] M. Rogina, Basis of splines associated with some singular differential operators, BIT, 32 (1992), pp. 496-505.
[4] M. Rogina, On construction of fourth order Chebyshev splines, Math. Commun., 4 (1999), pp. 83-92.
[5] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.

[^0]: *This work was supported by the Grant No. 037011 from the Ministry of Science and Technology of the Republic of Croatia.
 ${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia, e-mail: tinab@math.hr
 ${ }^{\ddagger}$ Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia, e-mail: rogina@math.hr

