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Computation of Power–Series Expansions in

Homogenization of Nonlinear Equations∗

Nenad Antonić† and Martin Lazar‡

Abstract. In the theory of homogenization it is of particular interest to determine the
classes of problems which are stable on taking the homogenization limit. A notable situation
where the limit enlarges the class of original problems is known as memory (nonlocal) effect.
A number of results in that direction has been obtained for linear problems.

Tartar initiated the study of effective equation corresponding to nonlinear equation:

∂tun + anu
2

n = f.

Significant progress has been hampered by the complexity of required computations needed in

order to obtain the terms in power-series expansion. We propose a method which overcomes

that difficulty by introducing graphs representing the domain of integration of the integrals

in each term. The graphs are relatively simple, it is easy to calculate with them and they

give us a clear image of the form of each term. The method allows us to discuss the form of

the effective equation and the convergence of power-series expansions.
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1. Introduction

In the theory of non-periodic deterministic homogenization, as developed by
F. Murat and L. Tartar, one important goal is to determine classes of differential
(or more generally pseudo–differential) operators which are closed on taking the ho-
mogenization limit (more precisely, the limit in the sense of H-convergence, see [4]).
The first precise mathematical result in that direction was obtained by S. Spagnolo [5]
for stationary heat conduction with symmetric conductivity tensor.

In the quest for such classes of operators one phenomenon is ubiquitous: the non-
local effects — the homogenization limit of a sequence of partial differential operators
is an integro–differential operator.

∗This work is supported in part by the Croatian Ministry of Science and Technology through
project 037015 — Oscillatory solutions of partial differential equations.

†Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia,
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In abstract terms, for linear differential operators which commute with transla-
tions, the limit has the same property. Thus, by the L. Schwartz theorem, it can be
expressed as a convolution operator.

Various results for particular linear equations, including the precise description of
the kernels of convolution operators, have been obtained by various authors [1, 2, 3,
6, 7].

Of particular interest for us is the only such result for the so-called time-dependent
coefficients [8], where one considers a sequence of initial value problems of the form:





∂un

∂t
(x, t) + an(x, t)un(x, t) = f(x, t)

un(x, 0) = v(x),
(1)

with t ∈ R
+ and x ∈ Ω, a set equipped by a non-atomic measure (for simplicity, one

can take a measurable set Ω ⊆ R
d with the Lebesgue measure).

It is assumed that the sequence (an) satisfies:

α ≤ an(x, t) ≤ β (a.e.)

|an(x, t)− an(x, s)| ≤ ε(|t− s|) (a.e. x ∈ Ω), t, s ∈ R
+,

where ε(σ) → 0 as σ → 0.

The effective (homogenized) equation is then of the form:

∂u∞

∂t
+ a∞(·, t)u∞ = f(·, t) +

∫ t

0

K(·, t, s)u∞(·, s) ds, (2)

with the same initial condition, where a∞ is L∞ weak ∗ limit of an.

After defining a new sequence of functions bn := an − a∞, one considers an
equation with parameter γ:





∂Un(·, ·, γ)

∂t
+ (a∞ + γbn)Un(·, ·, γ) = f

Un(·, 0, γ) = v,

so that (1) is obtained by taking γ = 1. Tartar based his analysis on analytic depen-
dence on γ. In the first step, a subsequence is extracted such that for each k ≥ 1 and
s1, . . . , sk ∈ R

+

bn(·, s1) · · · bn(·, sk) ⇀ Mk(·, s1, . . . , sk) in L∞(Ω) weak ∗. (3)

It is assumed that Un admits the expansion

Un(x, t; γ) =
∞∑

k=0

γkUn,k(x, t) (4)
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in which Un,0 = U∗ is independent of n, and is taken as the unique solution of






∂U∗

∂t
+ a∞U∗ = f

U∗(·, 0) = v,

(5)

while the functions Un,k are defined by induction for k ≥ 1 as solutions of






∂Un,k

∂t
+ a∞Un,k + bnUn,k−1 = 0

Un,k(·, 0) = 0.
(6)

The functions Un,k could be written explicitly, as well as their weak ∗ limits U∞,k,
after passing to an appropriate subsequence. The weak ∗ limit W∞,k of bnUn,k is
computed in the same way.

Passing to the limit in (6) we get






∂U∞,k

∂t
+ a∞U∞,k +W∞,k−1 = 0

U∞,k(·, 0) = 0

for k ≥ 1, so that, after taking (5) into account, one can deduce that

∂

( ∞∑

k=0

γkU∞,k

)

∂t
+ a∞

( ∞∑

k=0

γkU∞,k

)
+

∞∑

k=0

γk+1W∞,k = f. (7)

Next step is to identify the terms in the following power-series expansion:

K(x, s, t; γ) =

∞∑

k=2

γkKk(x, s, t).

After inserting it in (2), comparing with (7) and equating the terms with the same
power of γ, an explicit expression for Kk is obtained. Each Kk is represented by sums
and integrals of functions M and a∞.

As an academic example, Tartar attempted to apply the above procedure to a
nonlinear ordinary differential equation depending on a parameter x:






∂un

∂t
(x, t) + an(x, t)u

2
n(x, t) = f(x, t)

un(x, 0) = v(x).

In order to avoid questions of blow-up, which would force us to work on a finite interval
〈0, T 〉 adapted to the data, it is reasonable to assume that α ≥ 0, 0 ≤ v ≤ M0, and
0 ≤ f ≤ F (a.e.) in Ω× R

+ for some constants M0 and F .
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Again, one looks for an expansion (4) in which Un,0 = U∗ is now taken as the
unique solution of 




∂U∗

∂t
+ a∞U2

∗
= f

U∗(·, 0) = v,

while the functions Un,k are defined by induction for k ≥ 1 as solutions of






∂Un,k

∂t
+ a∞Vn,k + bnVn,k−1 = 0

Un,k(·, 0) = 0,

(8)

where

Vn,k =

k∑

j=0

Un,j Un,k−j .

The weak ∗ limits U∞,k of Un,k, V∞,k of Vn,k and W∞,k of bnVn,k (on a subsequence,
of course) are then related by





∂U∞,k

∂t
+ a∞V∞,k +W∞,k−1 = 0

U∞,k(·, 0) = 0.
(9)

Tartar outlined two tasks which should be accomplished in order to apply the
above method successfully:

• Find an efficient representation for the integrals, which allows easy manipulation.

• Determine an adequate summation procedure for the above power-series.

In this paper we propose an answer to the first question.

2. Graph representation of integrals

The unique solution of the Cauchy problem





∂U(t)

∂t
+ g(t)U(t) + f(t) = 0

U(0) = 0

is given by the formula

U(t) = −

∫ t

0

exp

(
−

∫ t

s

g(σ) dσ

)
f(s) ds.

Accordingly, by using

R(s, t) = exp

(
−

∫ t

s

2a∞(x, σ)U∗(x, σ) dσ

)
,
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the solutions of (8) can be expressed by the recursive formula

Un,k(t) = −

∫ t

0

R(s, t)

(
a∞(s)

k−1∑

j=1

Un,j(s)Un,k−j(s)

+ bn(s)

k−1∑

j=0

Un,j(s)Un,k−1−j(s)

)
ds. (10)

It follows that the explicit expression for Un,k consists of integrals, sums and products
of four basic functions R, bn, a∞ and U∗. We are interested in U∞,k, the weak ∗ limit
of (Un,k) in L∞(Ω). When taking the limit, the powers of function bn change according
to relation (3), while the other factors remain the same. Accordingly, we will make no
explicit difference between functions bn and M , writing the first in expressions for Un,k

and the second in the corresponding expressions for U∞,k. Therefore, the expression
for U∞,k is of the form

U∞,k(t) =

Nk∑

j=1

akj S
k
j (t), (11)

where akj is an integer and Sk
j denotes the multiple integral

Sk
j (t) =

∫ t1

s1

∫ t2

s2

· · ·

∫ t
Mk

j

s
Mk

j

fk
j (s1, . . . , sMk

j
, t1, . . . , tMk

j
, z1, . . . , zMk

j
, t)

dz1 · · · dzMk
j
, (12)

with fk
j being the product of basic functions. It can easily be shown that maxj M

k
j =

2k − 1.

In the analysis of (10) we encountered the following problem. With increasing k,
the number Nk of terms in the expression for U∞,k grows, as well as the number of
both the integrals and factors in each term. Hence the computation of U∞,k becomes
very complicated, almost impossible. Our goal is to find a simpler way of presentation
of these expressions.

We start with a few lemmas.

Lemma 1. Each integral in the expression for U∞,k has zero as a lower limit of
integration; in other words, each sj in (12) is equal to 0.

Proof. Let us look at the explicit expression for U∞,1:

U∞,1 = −

∫ t

0

R(s, t)M(s)U2
∗
(s) ds.

In this case the statement is valid. By using the induction on k and (10) it can easily
be shown that it is valid in general.
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Lemma 2. In each integrand fk
j in (12) the function R appears exactly Mk

j times as
a factor, with variables as follows

R(z1, t1)R(z2, t2) · · ·R(zMk
j
, tMk

j
).

Lemma 3. In each term Sk
j in the expression for U∞,k the basic function M appears

as a factor in the integrand fk
j exactly once, as a function of k variables. This means

that the factor is of the form

M(σ1, σ2, . . . , σk), with σi ∈ {t1, t2, . . . , tMk
j
, z1, z2, . . . , zMk

j
, t},

for i = 1, . . . , k.

Proof. The statement is valid for k = 1. Let us assume that it is valid for j < k and
prove that it is valid for j = k, as well. In the first term of the integrand in (10) we
have terms including products Un,jUn,k−j . According to the assumption of induction,

in each term S
j
i in the expression for Un,j the basic function bn appears as a factor

j times. Similarly, in each term in the expression for Un,k−j the basic function bn
appears as a factor k − j times. Accordingly, in each term of the product Un,jUn,k−j

the basic function bn appears as a factor k times. The same proof can easily be applied
to the second part of expression (10).

Lemma 4. The upper limits of integration t1, t2, . . . , tMk
j
in expression (12) belong

to the set {t, z1, z2, . . . , zMk
j
}, and the domains of integration are described by the

following sequence of inequalities






0 ≤ zm1

1

≤ zm1

2

≤ · · · ≤ zm1
n1

≤ t

0 ≤ zm2

1

≤ zm2

2

≤ · · · ≤ zm2
n2

≤ u2

· · · · · · · · ·

0 ≤ zml
1

≤ zml
2

≤ · · · ≤ zml
nl

≤ ul.

(13)

In these inequalities every member of the set {z1, z2, . . . , zMk
j
} appears exactly once.

Furthermore, let us introduce the following sets

A1 = {zm1

1

, zm1

2

, . . . , zm1
n1

},

A2 = {zm2

1

, zm2

2

, . . . , zm2
n2

},
...

Al = {zml
1

, zml
2

, . . . , zml
nl

}.

Then we have

u2 ∈ A1, u3 ∈ A1 ∪ A2, . . . , ul ∈ A1 ∪ A2 ∪ · · · ∪ Al−1. (14)
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Now we are ready to associate graphs with integrals. With graphs we want pri-
marily to show clearly the domain of integration in each term Sk

j . Each graph will
contain a finite number of vertices and edges, two of the vertices being emphasized:

• bottom or starting point 0,

• top or final point t.

All other vertices will be called inner vertices . Each inner vertex denotes a variable
of integration. From every inner vertex exactly one edge goes upward. The vertex at
the top end of that edge will represent the upper limit of integration concerning the
variable below. The graph will contain some kind of orientation. We go from the
starting point 0 upward by one or more edges, which continue to go upwards through
one or more vertices, and at the end they all come to the final point t. The exact
algorithm follows.

We go from the starting point 0 upward drawing an edge having the variable zm1

1

from (13) as the upper vertex. From that vertex we draw the next edge, having the
variable zm1

2

as the other end, and we continue such a procedure by passing through

the variables from the first sequence in (13), till the final point t is reached. After
that, we repeat the procedure for the second sequence. We again start from 0 drawing
upward a new edge having the variable zm2

1

as the upper vertex. From that vertex
we draw the next edge, having the variable zm2

2

as the other end, and continue such a
procedure by passing through the variables from the second sequence, till the variable
zm2

n2

. We join that variable by an edge with the vertex u2 already existing, because

of (14) (we draw only one vertex for each variable). We repeat this procedure for all
sequences from (13). In the end, we attach to each graph an integer denoting how
many times (and with which sign) that graph (summand) appears in the expression
of U∞,k. Of course, this integer corresponds to akj in (11).

Let us now draw a graph for k = 1, namely

U∞,1 = −

∫ t

0

R(s, t)M(s)U2
∗
(s) ds.

Its graph is

0

s

t

−1

This is the simplest graph, which tells us that the function f(s, t) is integrated from
0 to t. We do not know exactly the structure of f , but we know that it is a product
of basic functions. Our next goal is to determine the exact structure of the integrand
f from the graph.
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3. Generation of graphs

In this section we describe a procedure to draw graphs describing the terms in the
expression for U∞,k without knowing the expression itself, but only by looking at the
graphs for U∞,j, j = 1, . . . , k− 1. In fact, we want to express (10) in terms of graphs.

Let us first consider the explicit formula for Un,2:

Un,2(t) = −

∫ t

0

R(s, t)
(
a∞(s)U2

n,1(s) + 2bn(s)U∗(s)Un,1(s)
)
ds.

After taking the limit, the only difference is that the product bn(s1) · · · bn(sj) changes
into M(s1, . . . , sj). The first term on the right-hand side reads:

−

∫ t

0

∫ s

0

∫ s

0

R(s, t) a∞(s)R(s1, s)R(s2, s)M(s1, s2)U
2
∗
(s1)U

2
∗
(s2) ds1 ds2 ds.

It can be represented by the graph:

0

s1 s2

s

t

−1

By looking at the graph we come to an idea — taking products of summands Sk
j

from Un,k and Sl
i from Un,l and integrating them from 0 to t corresponds to joining of

the graphs in the following way: draw two graphs, each representing one of the terms
with the common starting point 0, and the common endpoint, which we will denote
by s. Then connect the vertex s with t, the endpoint of the new graph. This last step
corresponds to the integral

∫ t

0
in (10).

We want our graphs to give us all the information about the terms. For this
purpose let us complicate our graphs a bit. We will introduce two kinds of inner
vertices, which we will denote by ◦ and •. The first sign will denote a vertex in which
the function a∞ appears as a factor.

Lemma 5. The function M depends exactly on those variables corresponding to the
vertices denoted by •.

The following lemma gives us information about the fourth, until now unmen-
tioned basic function U∗.
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Lemma 6. The function U∗ does not depend on the variables corresponding to the
vertices with two entering edges. For other vertices, the following rule is valid: if we
have a sequence of vertices 0, s1, s2, . . . , sn connected by the edges 0— s1, s1— s2, . . . ,
sn−1— sn, where sn is the first vertex in the sequence in which two edges enter, or sn
is the endpoint t, then U∗ appears as a function of these variables in the following way

U2
∗
(s1)U∗(s2)U∗(s3) · · ·U∗(sn−1).

If we have a sequence as above, where only the point 0 is replaced by a vertex s0 in
which two edges enter, then U∗ appears in the following way

U∗(s1)U∗(s2)U∗(s3) · · ·U∗(sn−1).

Let us see how the graphs look like. For U∞,2 the complete graph is:

0

s1 s2

s

t

−1

0

s1

s

t

2

From the previous graphs it is now easy to draw the graph for U∞,3 by using the
particular case of (10):

U∞,3(t) = −

∫ t

0

R(s, t)
(
2a∞(s)U∞,1(s)U∞,2(s)

+ 2bn(s)U∗(s)U∞,2(s) + bnU
2
∞,1(s)

)
ds.

The corresponding graph is

0

s2 s3 s4

s1

s

t

−2

0

s3

s2

s1

s

t

4

0

s2 s3

s1

s

t

2

0

s2

s1

s

t

−4

0

s1 s2

s

t

−1
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By using previous lemmas we can easily write down the explicit expression for U∞,3:

U∞,3 = −2

∫ t

0

∫ s

0

∫ s

0

∫ s1

0

∫ s1

0

a∞(s) a∞(s1)R(s, t)R(s1, s)R(s2, s1)R(s3, s1)R(s4, s)

·M(s2, s3, s4)U
2
∗
(s2)U

2
∗
(s3)U

2
∗
(s4) ds2 ds3 ds4 ds1 ds

+ 4

∫ t

0

∫ s

0

∫ s

0

∫ s1

0

a∞(s)R(s, t)R(s1, s)R(s3, s1)R(s2, s)

·M(s1, s2, s3)U∗(s1)U
2
∗
(s2)U

2
∗
(s3) ds3 ds1 ds2 ds

+ 2

∫ t

0

∫ s

0

∫ s1

0

∫ s1

0

a∞(s1)R(s, t)R(s1, s)R(s2, s1)R(s3, s1)

·M(s, s2, s3)U∗(s)U
2
∗
(s2)U

2
∗
(s3) ds3 ds2 ds1 ds

− 4

∫ t

0

∫ s

0

∫ s1

0

R(s, t)R(s1, s)R(s2, s1)

·M(s, s1, s2)U∗(s)U∗(s1)U
2
∗
(s2) ds2 ds1 ds

−

∫ t

0

∫ s

0

∫ s

0

R(s, t)R(s1, s)R(s2, s)

·M(s, s1, s2)U∗(s)U
2
∗
(s1)U

2
∗
(s2) ds2 ds1 ds.

4. Formal expansion

In the same way we can compute other functions appearing in (9): V∞,k and
W∞,k. They can also be represented by graphs, constructed in the same way as
graphs for U∞,k. These graphs allow us to write easily the explicit expressions for
V∞,k and W∞,k. For example, the graph for V∞,1 is same as the graph for U∞,1, only
the corresponding integer is −2, and the graph for V∞,2 is

0

s1 s2

s

t

−2

0

s1

s

t

4

0

s1 s2

t

1

By our method we can compute the first dozen terms in the expansion of U , with
the aid of a personal computer. Of course, the formulæ involving integrals are cum-
bersome; thus we explicitly write down only the expansion up to terms involving γ3.
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Theorem 1. The function

Ũ(x, t) = U∗(x, t) + γ2U∞,2(x, t) + γ3U∞,3(x, t)

satisfies the equation (where we omit the explicit writing of the variable x):

∂Ũ

∂t
(t) + a∞(t) Ũ2(t)

+ γ2 a∞(t)

∫ t

0

∫ t

0

R∗(s1, t)R
∗(s2, t)M(s1, s2) Ũ

2(s1) Ũ
2(s2) ds1 ds2

− 2γ2 Ũ(t)

∫ t

0

R∗(s, t)M(s, t) Ũ2(s) ds

+ 2γ3 a∞(t)

∫ t

0

∫ t

0

∫ s1

0

∫ s1

0

a∞(s1)R
∗(s1, t)R

∗(s2, s1)R
∗(s3, s1)R

∗(s4, t)

·M(s2, s3, s4) Ũ
2(s2) Ũ

2(s3) Ũ
2(s4) ds1 ds2 ds3 ds4

− 4γ3 a∞(t)

∫ t

0

∫ t

0

∫ s1

0

R∗(s1, t)R
∗(s3, s1)R

∗(s2, t)

·M(s1, s2, s3) Ũ(s1) Ũ
2(s2) Ũ

2(s3) ds1 ds2 ds3

− 2γ3 Ũ(t)

∫ t

0

∫ s1

0

∫ s1

0

a∞(s1)R
∗(s1, t)R

∗(s2, s1)R
∗(s3, s1)

·M(t, s2, s3) Ũ
2(s2) Ũ

2(s3) ds3 ds2 ds1

+ 4γ3 Ũ(t)

∫ t

0

∫ s1

0

R∗(s1, t)R
∗(s2, s1)M(t, s1, s2) Ũ(s1) Ũ

2(s2) ds2 ds1

+ γ3

∫ t

0

∫ t

0

R∗(·, s1, t)R
∗(·, s2, t)M(·, s1, s2, t) Ũ

2(s1) Ũ
2(s2) ds1 ds2

= f +O(γ4),

with initial condition
Ũ(·, 0) = v,

where

R∗(x, s, t) = exp

(
−

∫ t

s

2a∞(x, σ) Ũ (x, σ) dσ

)
.
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