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On the Effective Boundary Conditions Between

Different Flow Regions

Andro Mikelić∗

Abstract. We give a review of recent mathematical results on the derivation of the ef-

fective constitutive laws at the interfaces separating different flow regions. Three cases are

considered: (a) the effective transmission conditions at the boundary between two different

porous media, (b) the effective boundary conditions for a viscous flow across a porous bed,

and (c) the effective boundary conditions at the interface between a seabed and a sea. In

all those situations the effective equations in the interior of every part are well-known, but

their coupling at the interface requires studying boundary layers for the flow equations in a

heterogeneous periodic porous medium.
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1. Introduction

Flows through heterogeneous structures, containing two or several subdomains
with different micro-structures, arise in many applications. It is known that filtration
of an incompressible viscous fluid through a rigid porous medium is described by
the Darcy’s law. For its derivation from the first principles, in the limit when the
characteristic size of the pores ε tends to zero, the periodicity of the porous medium
is required (see [32]). The periodicity condition can be relaxed to a kind of statistical
homogeneity and ergodicity (see [4]), but clearly such assumptions break down close
to the boundaries. Deviations from Darcy’s law are expected only in thin layers near
the interfaces. However, they can significantly change the structure of coefficients and
even the effective constitutive law.

The first such problem of importance is finding a relationship between the filtra-
tion velocity and the pressure gradient for an incompressible viscous flow through a
domain consisting of two different periodic porous media separated by an interface.
The homogenization argument from [31], [1] or [28] is local and we get the Darcy’s
law in every porous part. However, due to the different geometric structures, the
permeability tensors are different. Also, close to the interface the periodicity is lost.
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The incompressibility of the flow implies the continuity of the normal components of
the filtration velocities and it gives one of the required conditions. Another physically
natural interface condition is the continuity of the effective pressure field. It is usually
imposed without discussion as intuitively clear (see, e.g., Dagan [11]). These two con-
ditions are called the refraction conditions at a boundary between two porous bodies.
Nevertheless, one should not forget that Darcy’s law is obtained after averaging the
momentum equation and the orders of differential operators are changed. In general,
the stress tensor completely changes in the weak limit and there are no a priori reasons
to have the pressure continuity at the interfaces. However, the difference between the
geometrical structure of the subdomains is not so big and we don’t expect that the
averaging procedure leads to drastic changes. Finally, there are reasons to believe in
good understanding of the problem by engineers. The rigorous justification is in [19]
and here we give the result in §2.

The next class of the problems involves contact between a porous medium and a
continuum of a different nature. First, we can look for the effective behavior of the
filtration velocity at an impervious boundary of the porous medium. The incompress-
ibility and the no-slip boundary condition imply that the normal filtration velocity
is zero. In the case of a flat impervious boundary it is possible to prove that such
approximation leads to an error of order ε in the H−1/2-norm. For the rigorous proof,
which uses the appropriate boundary layers, we refer to [16]. In the same article the
tangential component of the filtration velocity was determined and shown to be of
order O(1). Hence, the original no-slip condition was lost in the homogenization limit.
The case of a general bounded domain was considered in [26] and an error estimate
for the L2-norm of the difference between Darcy’s velocity and the rescaled physical
velocity, of order O(ε1/6) was justified.

The problems described above involve effective interface conditions which are
obvious from modelling point of view. Finding the effective boundary conditions at a
naturally permeable wall is a much more complicated problem. Namely, if a flow of a
viscous fluid through a channel has a common boundary with a porous medium, then
one wishes to have the effective boundary condition at such interface. For simplicity,
we are considering a slow viscous and incompressible flow. Clearly, the effective flow
through a porous medium is described by the Darcy’s law and the filtration velocity is
of order O(ε2). In the channel, the fluid flow remains governed by the Stokes system
and the effective velocity field is of order 1. We note that this means that one should
couple two systems of PDE’s, one being a second order system for the velocity and a
first order equation for the pressure, respectively, and the other being a scalar second
order equation for the pressure and a first order system for the filtration velocity.

The coupling conditions should be imposed at the interface. One coupling con-
dition is very simple. It is a consequence of the incompressibility and says that the
normal velocity of the free fluid is of the orderO(ε2) at the interface. This is not enough
for determination of the effective flow, and one should specify more conditions. Clas-
sically, the tangential velocity of the free fluid was set to zero at the interface. This is
a generalization of the no-slip condition at an impervious boundary, and it could not
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be justified, neither from mathematical nor from modelling or experimental point of
view.

G. S. Beavers and D. D. Joseph concluded experimentally in [3] that the difference
between the slip velocity of the free fluid and the tangential component of the seepage
velocity at the interface, was proportional to the shear stress from the free fluid.
This law was justified at a physical level of rigour by P. G. Saffman in [30], where
it was observed that the seepage velocity contribution can be neglected. He used a
statistical approach to extend Darcy’s law to heterogeneous porous media. However,
it should be noted that his argument is not entirely satisfactory, since he made an ad
hoc hypothesis about the representation of the averaged interfacial forces as a linear
integral functional of the velocity, with an unknown kernel. A similar argument is
developed in [10], where Slattery’s linear relationship between the pressure gradient
and a combination of derivatives of the seepage velocity was assumed.

Neither paper [30] nor [10] contain construction of the boundary layers describing
the flow behavior close to the interface. The Saffman’s modification of the law by
Beavers and Joseph is widely accepted and it reads

√
kε

∂vτ
∂ν

= αvτ +O(kε). (1)

Here α is a dimensionless parameter depending on the geometrical structure of the
porous medium, ε is the characteristic pore size and kε = ε2k is the (scalar) perme-
ability. ν denotes the unit normal vector at the interface and vτ is the slip velocity of
the free fluid in the channel.

In the papers [12] and [23], H. Ene, Th. Levy and É. Sanchez–Palencia have under-
taken the effort to find the effective interface laws by a formal asymptotic argument.
They have considered two essentially different cases. The case of the flow in a cavity,
lying inside of a porous matrix, was considered in [23]. By comparing the orders of
the magnitude of characteristic quantities, it was found out that the effective pressure
should be constant at the interface. This conclusion was rigorously justified in [17],
after constructing the appropriate boundary layers.

The second case corresponds to the flow considered by Beavers and Joseph. In the
paper [12] the continuity of the effective pressure was deduced, but without a rigorous
argument or an asymptotic expansion. From modelling point of view this interface
law is acceptable, since two pressures are of order O(1). It could be considered as an
alternative to (1), but the rigorous analysis and computations from [22] show that the
continuity of the effective pressure is assured only for an isotropic porous medium. In
the general case the effective pressure jump is proportional to the effective shear stress
of the free fluid.

In §3 we are going to sketch the justification of the law (1) by the technique
developed in [15] for Laplace’s operator and then in [17] for the Stokes system. The
detailed proof for the Navier–Stokes system and the boundary conditions for the pres-
sure on the inlet and outlet boundaries is in [20]. Since the inertia effects and the
outer boundary layers effects, due to the choice of the pressure boundary conditions,
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are not of the fundamental importance for the study of the interface boundary con-
ditions, we’ll make some non-essential simplifications. First, we neglect the inertial
term. Anyhow, we are not able to find the boundary behavior for the turbulent free
flow. The nonlinear stability results for the laminar Navier–Stokes system are in [20].
Second, we suppose that the boundary is sufficiently long and one can assume the
periodic boundary conditions at the inlet/outlet boundary. The flow is then governed
by a force coming from the pressure drop, equal to ((pb − p0)/b) e1.

In §4 we briefly address the derivation of the transmission condition at the in-
terface between a seabed and a water flow. The fluid is supposed to be viscous and
incompressible, and the solid part of the seabed elastic. The constitutive law for an
elastic porous media was proposed by Biot in the fifties (see [5] and [6]). For its
derivation using the formal asymptotic expansions we refer to [2], [7] and [31]. The
first rigorous result is the paper [29], and the detailed theory of various cases is in the
articles [13] and [8]. The question of the derivation of the conditions at the interface
was addressed only for an inviscid fluid in [24], using the formal asymptotic matching.
In §4 we announce the first mathematically rigorous results in this direction.

Let us also mention the derivation of the effective laws for flows through sieves and
filters. We mention only the papers [9] and [18]. The paper [18] discusses the effective
equations for a viscous incompressible flow through a filter of a finite thickness, and
also uses the boundary layers developed in [17].

As general references on the homogenization and porous media we mention [14],
[28] and [31].

2. Boundary conditions at the contact interface between two

porous media

The goal of this section is to confirm rigorously the pressure continuity at the
interface between two porous media with different micro-structures. In order to present
the ideas we introduce a model problem.

We consider a slow viscous two-dimensional incompressible flow in a domain Ωε

consisting of the porous media Ω1 = (0, L) × R+ and Ω2 = (0, L) × R−, and the
interface Σ = (0, L)×{0} between them. We assume that the structure of the porous
media is periodic. Ω1 is generated by translations of a cell Zε = εZ, where Z is the
standard cell, Z = (0, 1)2, consisting of an open set Z∗, ∂Z∗ ∈ C∞, being strictly
included in Z. Let ZF = Z \ Z̄∗ be connected and let χ1 be the characteristic function
of ZF extended by periodicity to R

2. We set χε
1(x) = χ1(x/ε), x ∈ R

2, and define Ωε
1

by Ωε
1 = {x | x ∈ Ω1, χ

ε
1(x) = 1}. Ω2 is also generated by translations of a cell Zε, but

this time we suppose that Z strictly includes the open set Y ∗, ∂Y ∗ ∈ C∞, and that
YF = Z \ Ȳ ∗. Let χ2 be the characteristic function of YF . We set χε

2(x) = χ2(x/ε) on
R

2 and Ωε
2 = {x | x ∈ Ω2, χ

ε
2(x) = 1}. Then Ωε = Ωε

1 ∪ Σ ∪ Ωε
2. It is supposed that

L/ε ∈ N and f ∈ C∞(Ω̄)2, supp f is compact, f is L-periodic in x1.
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The flow through Ωε is described by the Stokes system

−∆uε +∇pε = f in Ωε, (2)

div uε = 0 in Ωε, (3)

uε = 0 on ∂Ωε \ ∂(Ω1 ∪ Ω2), (4)

{uε, pε} is L-periodic in x1, (5)

∇uε ∈ L2(Ωε)4 and ∇pε ∈ L2(Ωε)2. (6)

The choice of periodic boundary conditions in x1 and unboundedness with re-
spect to x2, eliminates the effects of outer boundaries, which are of no importance for
justifying the pressure continuity.

Before stating our results, we briefly discuss problem (2)–(6). We introduce the
functional space Wε by

Wε =
{

z ∈ H1(Ωε)2
∣

∣ div z = 0 a.e. in Ωε, z = 0 on ∂Ωε \ ∂(Ω1 ∪Ω2),

and z is H1-periodic in x1

}

.

Then, using Poincaré’s inequality, we easily get

Lemma 1. Problem (2)–(6) has a unique solution uε ∈ Wε. Furthermore, there exists
pε ∈ L2

loc(Ω
ε), ∇pε ∈ L2(Ωε)2, such that (2) holds in the sense of distributions.

Finally, {uε, pε} ∈ C∞(Ωε)2 × C∞(Ωε).

Now we start with the description of the homogenized problem. First we introduce
auxiliary problems defining the two permeabilities.

(i) We are looking for {wj , πj}, j = 1, 2, satisfying



















−∆yw
j +∇yπ

j = ej in ZF ,

divy w
j = 0 in ZF ,

∫

ZF

πj(y) dy = 0,

wj = 0 on ∂Z∗, {wj , πj} is 1-periodic.

(7)

Problem (7) admits a unique solution {wj , πj} ∈ C∞(Z̄F )
3 and the matrix

Kw
ij =

∫

ZF

wi
j(y) dy, i, j = 1, 2,

is symmetric and positive definite. Analogously, we consider the problem:

(ii) Find {vj , ωj} ∈ H1(YF )
2 × L2(YF ) such that



















−∆yv
j +∇yω

j = ej in YF ,

divy v
j = 0 in YF ,

∫

YF

ωj(y) dy = 0,

vj = 0 on ∂Y ∗, {vj , ωj} is 1-periodic.
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The corresponding matrix is Kv, given by

Kv
ij =

∫

YF

vij(y) dy, i, j = 1, 2.

Then the global permeability is defined by

K(x2) =

{

Kw, for x2 > 0
Kv, for x2 < 0,

and the homogenized problem reads:

Find p0 ∈ L2
loc(Ω), ∇p0 ∈ L2(Ω1 ∪ Ω2)

2 such that

{ − div{K∇p0} = − div{Kf} in Ω,

p0 is L-periodic in x1,
(8)

where Ω = Ω1 ∪ Ω2 ∪ Σ.

Obviously, problem (8) admits a solution p0 ∈ H1
loc(Ω1 ∪ Ω2), unique up to a

constant. It is important to establish the regularity properties of p0. Due to the
periodicity and the geometry, we immediately have

Lemma 2. p0 ∈ C∞
per ([0, L];H

1
loc(R+ ∪ R−)), i.e., p

0 is C∞ with respect to x1.

Unfortunately, there is a jump of derivatives with respect to x2 on Σ. However,
we have the following regularity result.

Proposition 1. Let f = 0 on [0, L]× (−δ, δ) for some δ > 0. Then p0 ∈ C∞([0, L]×
[0,+∞)) ∩ C∞([0, L]× (−∞, 0]) and p0(x1,−0) = p0(x1,+0) on Σ.

Proof. Proof is given in [19].

Corollary 1. For every α ∈ N
2 there exists δ0(α) > 0 such that

|Dαp0(x)| ≤ Ce−δ0(α)|x2|

for x2 > x∗(α).

Now we are able to give the main result. It is obtained in two steps, which can be
considered as independent results. The first result is obtained under the hypothesis:

{

f ∈ C∞
0 (Ω)2, f is L-periodic in x1,

and f = 0 on [0, L]× (−δ, δ) for some δ > 0,
(9)

and the second under the much weaker assumption:

f ∈ C∞
0 (Ω)2, f is L-periodic in x1. (10)
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Theorem 1. Let us suppose (9). Then we have

∥

∥

∥

∥

∥

uε

ε2
−

2
∑

k=1

(

H(x2)w
k
(x

ε

)

+H(−x2) v
k
(x

ε

)

)(

fk(x)−
∂p0

∂xk
(x)

)

∥

∥

∥

∥

∥

L2(Ω)2

≤ C
√
ε,

and
uε

ε2
⇀ Kw(f −∇p0)H(x2) +Kv(f −∇p0)H(−x2), (11)

weakly in L2(Ω)2. Furthermore, there exists an extension p̃ε of the pressure such that

∥

∥

∥

∥

1

1 + |x2|
(p̃ε − p0)

∥

∥

∥

∥

L2(Ω)

≤ C
√
ε.

The next result corresponds to the assumption (10).

Theorem 2. Let us suppose (10). Then we have

∥

∥

∥

∥

∥

uε

ε2
−

2
∑

k=1

(

H(x2)w
k
(x

ε

)

+H(−x2) v
k
(x

ε

)

)(

fk(x) −
∂p0

∂xk
(x)

)

∥

∥

∥

∥

∥

L2(Ω)2

≤ Cε1/8,

and there exists an extension p̃ε of the pressure such that
∥

∥

∥

∥

1

1 + |x2|
(p̃ε − p0)

∥

∥

∥

∥

L2(Ω)

≤ Cε1/8.

Finally, the convergence (11) holds true.

Corollary 2.

e2
uε

ε2

∣

∣

∣

∣

Σ

⇀ Kw(f −∇p0)e2 = Kv(f −∇p0)e2,

weakly in L2(Σ).

For the proofs we refer to [19]. It should be noted that the proofs involve cor-
recting the compressibility results caused by the two-scale approximation for uε and
the corresponding boundary layers. However, those corrections have their L2-norm
smaller than O(ε) and we are not obliged to keep them in the final error estimate.

3. Boundary conditions at the contact interface between a po-

rous medium and a channel flow

We consider the laminar viscous two-dimensional incompressible flow through a
domain Ω consisting of the porous medium Ω2 = (0, b) × (−L, 0), the channel Ω1 =
(0, b)× (0, h), and the permeable interface Σ = (0, b)×{0} between them. We assume



28 A. Mikelić

that the structure of the porous medium is periodic and generated by translations of
a cell Y ε = εY , where Y is the standard cell, Y = (0, 1)2, containing an open set Z∗,
∂Z∗ ∈ C∞, strictly included in Y . Let YF = Y \ Z̄∗ and let χ be the characteristic
function of YF , extended by periodicity to R

2. We set χε(x) = χ(x/ε), x ∈ R
2, and

define Ωε
2 by Ωε

2 = {x | x ∈ Ω2, χ
ε(x) = 1}. Furthermore, Ωε = Ω1 ∪ Σ ∪ Ωε

2 is the
fluid part of Ω. It is supposed that (b/ε, L/ε) ∈ N

2.

First, we give the basic conservation laws describing the viscous incompressible
flow in the domain Ωε, with the rigid porous part Ω2:

−µ∆vε +∇pε = −pb − p0
b

e1 in Ωε, (12)

div vε = 0 in Ωε, (13)

vε = 0 on ∂Ωε \ ∂Ω and on (0, b)× ({−L} ∪ {h}), (14)

{vε, pε} is b-periodic in x1, (15)

where µ > 0 is the viscosity, and p0 and pb are given constants. ε > 0 is the charac-
teristic pore size, vε is the velocity and pε is the pressure field. Problem (12)–(15) has
a unique solution {vε, pε} ∈ H1(Ωε)2 × L2

0(Ω
ε).

Now one would like to study of the effective behavior of the velocities vε and
pressures pε as ε → 0. We follow the decomposition approach from [20]. First, we
observe that the classic Poiseuille flow in Ω1, satisfying the no-slip conditions at Σ, is
given by

v0 =
pb − p0
2bµ

x2(x2 − h) e1, π0 = 0.

We extend this solution to Ω2 by setting v0 = 0 for −b ≤ x2 ≤ 0 and keeping the
same form of π0. Now, the idea is to construct the solution to (12)–(15) as a small
perturbation to the Poiseuille flow. We need the following simple auxiliary result:

Lemma 3. Let ϕ ∈ H1(Ωε
2) be such that ϕ = 0 on ∂Ωε

2 \ ∂Ω2. Then we have

‖ϕ‖L2(Ωε
2
) ≤ Cε‖∇ϕ‖L2(Ωε

2
)2

‖ϕ‖L2(Σ) ≤ Cε1/2‖∇ϕ‖L2(Ωε
2
)2

‖ϕ(0, ·)‖H1/2(−L,0) ≤ C‖∇ϕ‖L2(Ωε
2
)2 .

It implies the following stability result (see [20] or [28]).

Proposition 2. Let {vε, pε} be the solution for (12)–(14) and v0 the Poiseuille ve-
locity. Then we have

‖∇(vε − v0)‖L2(Ωε)4 ≤ C
√
ε (16)

‖vε‖L2(Ωε
2
)2 ≤ Cε

√
ε

‖vε‖L2(Σ) ≤ Cε

‖vε − v0‖L2(Ω1)2 ≤ Cε

‖pε‖L2(Ω1) ≤ C
√
ε.
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Therefore, we have obtained the uniform a priori estimates for {vε, pε}. Moreover,
we have found that Poiseuille’s flow in Ω1 is an O(ε) L2-approximation for vε. Beavers
and Joseph’s law should correspond to the next order velocity correction.

The leading contribution for the estimate (16) was the interface integral term
∫

Σ
ϕ1. Following the approach from [17], we eliminate it by constructing the Navier’s

boundary layer :

We introduce S = (0, 1)×{0}, Z+ = (0, 1)× (0,+∞) and the semi-infinite porous
slab Z− = ∪∞

k=1(YF − {0, k}). The flow region is then ZBL = Z+ ∪ S ∪ Z− and the
union of the solid boundaries S∞ = ∪∞

k=1(∂Z
∗ − {0, k}). We consider the following

problem:

Find {βbl , ωbl} with square-integrable gradients, satisfying

−∆yβ
bl +∇yω

bl = 0 in Z+ ∪ Z−, (17)

divy β
bl = 0 in Z+ ∪ Z−, (18)

[

βbl
]

S
(·, 0) = 0 on S, (19)

[

{∇yβ
bl − ωblI}e2

]

S
(·, 0) = e1 on S, (20)

βbl = 0 on S∞, {βbl , ωbl} is y1-periodic. (21)

Let
V =

{

z ∈ L2
loc(ZBL)

2
∣

∣ ∇yz ∈ L2(ZBL)
4, z ∈ L2(Z−)2,

z = 0 on ∪∞
k=1 (∂Z

∗ − {0, k}),
divy z = 0 in ZBL and z is y1-periodic

}

.

Then, by Lax–Milgram lemma, there is a unique βbl ∈ V satisfying
∫

ZBL

∇βbl∇ϕdy = −
∫

S

ϕ1 dy, ∀ϕ ∈ V.

By using De Rham’s theorem we obtain a function ωbl ∈ L2
loc(Z

+ ∪ Z−), unique up
to a constant and satisfying (17). By the elliptic theory, {βbl , ωbl} ∈ C∞(Z+ ∪ Z−)3

and ∀R > 0

{βbl , ωbl} ∈ H2
(

(

Z+ ∩ {0 < y2 < R}
)

∪
(

Z− ∩ {−R < y2 < 0}
)

)2

×H1
(

(

Z+ ∩ {0 < y2 < R}
)

∪
(

Z− ∩ {−R < y2 < 0}
)

)

.

For a neighbourhood O of S, which does not include any solid boundary, we obtain
βbl −

(

(y2 − y22/2)e
−y2H(y2), 0

)

∈ W 2,q(O)2 and ωbl ∈ W 1,q(O), ∀q ∈ [1,∞).

The goal is to prove that the system (17)–(21) describes a boundary layer, i.e.,
that βbl and ωbl stabilize exponentially towards constants, when |y2| → ∞. The proofs
are in [20] and [28], and we give here only the statements with some comments.

Since we are studying an incompressible flow, it is useful to prove properties of
the conserved averages. We have the following result:
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Lemma 4. Any solution {βbl , ωbl} satisfies

∫ 1

0

βbl
2 (y1, b) dy1 = 0, ∀b ∈ R,

∫ 1

0

ωbl(y1, b1) dy1 =

∫ 1

0

ωbl(y1, b2) dy1, ∀b1 > b2 ≥ 0,

∫ 1

0

βbl
1 (y1, b1) dy1 =

∫ 1

0

βbl
1 (y1, b2) dy1, ∀b1 > b2 ≥ 0,

∫ 1

0

βbl
1 (y1, 0) dy1 = −

∫

ZBL

|∇βbl(y)|2 dy.

Now we are able to formulate the result on the decays:

Proposition 3. Let

Cbl
1 =

∫ 1

0

βbl
1 (y1, 0) dy1 < 0 (22)

and

Cbl
ω =

∫ 1

0

ωbl(y1, 0) dy1.

Then for every y2 ≥ 0 and y1 ∈ (0, 1)

|βbl (y1, y2)− (Cbl
1 , 0)|+ |ωbl(y1, y2)− Cbl

ω | ≤ Ce−δy2 , ∀δ < 2π.

Furthermore, let k be a negative integer and Z−(k) = Z− ∩ ( ]0, 1[× ]−∞, k[ ). Then
there exist positive constants C, γ0 and a constant κ∞, independent of k, such that

‖βbl‖H1(Z−(k)) + ‖βbl‖L∞(Z−(k)) + ‖ωbl − κ∞‖L∞(Z−(k)) ≤ Ceγ0k.

Since ωbl is unique up to a constant, we fix it by setting κ∞ = 0. Hence, Cbl
ω is

the pressure drop between −∞ and ∞.

Remark 1. If the geometry of Z− is axisymmetric with respect to reflections around
the axis y1 = 1/2, then Cbl

ω = 0. For the proof we refer to [22]. In [22], a detailed
numerical analysis of the problem (17)–(21) is given. Through numerical experiments
it is shown that Cbl

ω 6= 0 for a general geometry of Z−.

We now define our boundary layer velocities and pressures in Ωε:

βbl,ε(x) = εβbl
(x

ε

)

and ωbl,ε(x) = ωbl
(x

ε

)

, x ∈ Ωε. (23)

We extend βbl,ε by zero to Ω \ Ωε. Then we have
∥

∥βbl,ε − ε(Cbl
1 , 0)H(x2)

∥

∥

Lq(Ω)2
= Cε1+1/q, ∀q ≥ 1,

∥

∥ωbl,ε − Cbl
ω H(x2)

∥

∥

Lq(Ωε)
+
∥

∥∇βbl ,ε
∥

∥

Lq(Ω1∪Σ∪Ω2)4
= Cε1/q, ∀q ≥ 1,
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and
∥

∥ωbl,ε(0, ·)− Cbl
ω H(·)

∥

∥

H−1/2(R)
+
√
ε
∥

∥ωbl,ε(0, ·)− Cbl
ω H(·)

∥

∥

L2(R)
= Cε,

ε−1/2
∥

∥βbl,ε(0, ·)− ε(Cbl
1 , 0)H(·)

∥

∥

L2(R)2
+

∥

∥

∥

∥

∂βbl,ε

∂x2
(0, ·)

∥

∥

∥

∥

H−1/2(R)2
= Cε.

As in [17], stabilization of βbl,ε towards a nonzero constant velocity ε(Cbl
1 , 0), at

the upper boundary, generates a counterflow. It has the form of 2D Couette flow
d = (1− x2/h) e1.

Now, we introduce the correctors for the velocity and for the pressure. We have
the following result (see [28] or [20]):

Theorem 3. Let

Uε(x) = vε − v0 + βbl ,ε ∂v01
∂x2

(0)− εCbl
1

∂v01
∂x2

(0)H(x2)
x2

h
e1,

Pε = pε +
(

ωbl,ε − Cbl
ω

)

µ
∂v01
∂x2

(0),

where v0 is the Poiseuille velocity and {βbl,ε, ωbl,ε} are defined by (23). Then we have
the following estimates

‖∇Uε‖L2(Ωε)4 ≤ Cε, (24)

‖ Uε‖L2(Ωε
2
)2 ≤ Cε2, (25)

‖ Uε‖L2(Σ)2 + ‖ Uε‖L2(Ω1)2 ≤ Cε3/2, (26)

‖Pε‖L2(Ω1) ≤ Cε. (27)

We note that Uε is not zero on the boundary (0, b)× {h}, but it satisfies the in-
equality |Uε(x)| ≤ C exp(−C0/ε) for some positive constants C and C0. Consequently,
we consider it being zero, without loosing generality.

The estimates (24)–(27) allow us to justify Saffman’s modification (1) of the

Beavers and Joseph’s law. Let H
1/2
per (Σ) = [H1

per (Σ), L
2(Σ)]1/2. Then we have (see [28]

and [20]):

Theorem 4. Let vε be the velocity field determined by (12)–(15) and let the boundary
layer tangential velocity at infinity Cbl

1 be given by (22). Then we have

∥

∥

∥

∥

vε1 + εCbl
1

∂vε1
∂x2

∥

∥

∥

∥

(

H
1/2
per (Σ)

)

′

≤ Cε3/2.

Now we introduce the effective flow equations in Ω1 through the following bound-
ary value problem, with the velocity satisfying the law of Beavers and Joseph:
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Find a velocity field ueff and a pressure field peff , such that

−µ∆ueff +∇peff = −pb − p0
b

e1 in Ω1, (28)

div ueff = 0 in Ω1, (29)

ueff = 0 on (0, b)× {h}, (30)

ueff and peff are b-periodic, (31)

ueff
2 = 0 and ueff

1 + εCbl
1

∂ueff
1

∂x2
= 0 on Σ. (32)

Problem (28)–(32) has a unique solution

ueff =

(

pb − p0
2bµ

(

x2 −
εCbl

1 h

h− εCbl
1

)

(x2 − h), 0

)

, for 0 ≤ x2 ≤ h,

peff = 0, for 0 ≤ x1 ≤ b.

The effective mass flow rate through the channel is then

Meff = b

∫ h

0

ueff
1 (x2) dx2 = −pb − p0

12µ
h3 h− 4εCbl

1

h− εCbl
1

,

where Cbl
1 < 0.

Let us estimate the error made when replacing {vε, pε,M ε} by {ueff , peff ,Meff }.
We have:

Proposition 4. (Justification of the law by Beavers and Joseph.)

‖∇(vε − ueff )‖L1(Ω1)4 ≤ Cε,

‖vε − ueff ‖L2(Ω1)2 ≤ Cε3/2,

|M ε −Meff | ≤ Cε3/2.

For the proofs we refer to [28], [20] and [22]. The result implies that there is
a significant gain in precision if we use the law by Beavers and Joseph, instead of
imposing the no-slip condition at the interface.

We note that by using the similar technique it is possible to obtain the effective
boundary conditions for viscous incompressible flows over rough surfaces (see [21]).

4. Boundary conditions at the interface between an elastic po-

rous medium and a free viscous flow

The goal of this section is to determine rigorously the effective conditions at the
interface between a seabed (i.e., an elastic porous medium) and a water flow in an
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ocean (i.e., a viscous incompressible fluid). In order to present the ideas we introduce
a model problem in 2D.

We consider a slow viscous two-dimensional incompressible flow in a domain Ωε

consisting of the free fluid domain Ω1 = (0, L) × R+, the elastic porous part Ω2 =
(0, L) × R−, and the interface Σ = (0, L) × {0} between them. We assume that
the structure of the porous media is periodic. Ω2 is generated by translations of a
cell Yε = εY, where Y is the standard cell, Y = (0, 1)2, consisting of an open set Ys,
∂Ys ∈ C∞, being strictly included in Y. Let Yf = Y\Ȳs be connected and let χ1 be the
characteristic function of Yf extended by periodicity to R

2. We set χε
1(x) = χ1(x/ε),

x ∈ R
2, and define Ωε

2 by Ωε
2 = {x | x ∈ Ω2, χ

ε
1(x) = 1}. Then Ωε

f = Ωε
2 ∪ Σ ∪ Ω1 and

Ωε
s = Ω2 \ Ωε

2. It is supposed that L/ε ∈ N and F ∈ C∞(Ω̄)2, suppF is compact, F
is L-periodic in x1. The linearized interface between the fluid and the solid parts is
Γε = ∂Ωε

s \ Ω2.

The flow through Ωε is described by the following coupling between the non-
stationary Stokes system and the non-stationary equations of linear elasticity. The
meaning of the factor ε2 in the viscosity coefficient is explained in [8].

ρs
∂2uε

∂t2
− div(σs,ε) = Fρs in Ωε

s × ]0, T [ (33)

σs,ε = AD(uε) in Ωε
s × ]0, T [ (34)

ρf
∂2uε

∂t2
− div(σf,ε) = Fρf in Ωε

f × ]0, T [ (35)

σf,ε = −pεI + 2µε2D

(

∂uε

∂t

)

in Ωε
f × ]0, T [ (36)

div
∂uε

∂t
= 0 in Ωε

f × ]0, T [, (37)

where uε is the solid displacement in Ωε
s,

∂uε

∂t is the fluid velocity in Ωε
f , and pε is the

fluid pressure. D denotes the symmetrized gradient, and the fourth order symmetric
tensor A contains the elasticity coefficients. At the interface between fluid and solid
parts we have

[uε] = 0, σs,ε · ν = σf,ε · ν, on Γε × ]0, T [. (38)

At the outer boundary we suppose integrability and L-periodicity in x1, i.e.,

∇uε ∈ L2(Ω)4, ∇pε ∈ L2(Ωε
f )

2, (39)

{uε, pε} are L-periodic in x1. (40)

For simplicity, we suppose that initially there was no flow and no deformations at
t = 0, i.e.,

uε(x, 0) = 0,
∂uε

∂t
(x, 0) = 0, in Ω.
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Then it is easy to prove that there is a unique solution uε ∈ H1( ]0, T [ × Ω)n

with d2uε

dt2 ∈ L2( ]0, T [×Ω)n and pε ∈ L2( ]0, T [×Ωε
f ), satisfying additional regularity

properties in time. We refer to [8] and [13] for more details.

Considering only the flow in the seabed, it is known that the effective behavior
is described by the law of Biot (see [5] and [6]). Its derivation by formal asymptotic
expansions is given in [7], [2] and [31]. The rigorous justification of the regularized
slightly compressible model is in [29]. The detailed theory for the system (33)–(40) can
be found in [8]. For presenting the result we first need to solve the auxiliary problems.

We start with the perturbation of the gradient, due to the elastic solid structure.
The auxiliary functions wij ∈ H1(Ys)

2 ∩ C∞(Ys)
2,

∫

Ys
wij = 0, and w0 ∈ H1(Ys)

2 ∩
C∞(Ys)

2 are given by

divy

{

A
(ei ⊗ ej + ej ⊗ ei

2
+Dy(w

ij)
)}

= 0 in Ys,

A
(ei ⊗ ej + ej ⊗ ei

2
+Dy(w

ij)
)

ν = 0 on ∂Ys,

and
− divy

{

ADy(w
0)
}

= 0 in Ys,

ADy(w
0)ν = ν on ∂Ys.

Furthermore, the tensors

AH
klij =

(
∫

Ys

A
(ei ⊗ ej + ej ⊗ ei

2
+Dy(w

ij)
)

)

kl

, BH =

∫

Ys

ADy(w
0),

are positive definite. Let CH
ij =

∫

Ys
divy w

ij(y) dy.

Hence the oscillation of the gradient due to the elastic solid part is ∇yu
1, with u1

having the form

u1(x, y, t) = p0(x, t)w0(y) +
∑

i,j

(

Dx(u
0(x, t))

)

ij
wij(y).

We construct the oscillations v due to the fluid flow by first solving



















ρf
∂wi

∂t
− µ∆wi +∇πi = 0,

divy w
i = 0, wi(y, 0) = ei,

wi |∂Yf
= 0, {wi, πi} is 1-periodic.

This problem is studied in [27], and it is proved that the matrixAij(t) =
∫

Yf
wj

i (y, t) dy

is positive definite and tends exponentially to zero when t → +∞. We note that
Aij(0) =

∫

Yf
wj

i (y, 0) dy = |Yf | δij .
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Let u0 denote the non-oscillatory part of the limit displacement and p0 the effec-
tive pressure. They are determined by solving the following Biot’s system in Ω2

divx

{

|Yf | ρf
∂u0

∂t
+
∑

i,j

ei

∫ t

0

Aij(t− τ)

[

ρfFj(x, τ) −
∂p0

∂xj
(x, τ)

]

dτ

−
∑

i,j

ei

∫ t

0

Aij(t− τ) ρf
∂2u0

j

∂τ2
(x, τ) dτ

}

= CHD

(

∂u0

∂t

)

+
∂p0

∂t

∫

Ys

divy w
0 dy. (41)

ρ̄
∂2u0

∂t2
−
∑

i,j

ei
d

dt

∫ t

0

Aij(t− τ)

[

∂p0

∂xj
(x, τ) + ρf

∂2u0

∂τ2
(x, τ)

]

dτ

− divx
{

AHDx(u
0)
}

− divx
{

p0BH
}

+ |Yf | ∇xp
0

= ρ̄F −
∑

i,j

ei
d

dt

∫ t

0

Aij(t− τ) ρfFj(x, τ) dτ, (42)

u0 and p0 are L-periodic in x1 and are zero initially. (43)

Then the oscillations of the velocity are given by

∂vi
∂t

=
∑

j

∫ t

0

wj
i (y, t− τ)

(

Fi(x, τ) −
1

ρf

∂p0

∂xi
(x, τ) − ∂2u0

∂t2
(x, τ)

)

dτ.

For the detailed analysis of the system (41)–(43) we refer to [8]. We repeat here only
the simplified version of the convergence result (see [8]):

Theorem 5. Let u0, p0, u1 and v be defined as above. Let Φε =
∫

Ω2
ε 1/(1 − x2).

Then we have

uε(x, t)− u0(x, t)− χΩε
2
v
(

x,
x

ε
, t
)

→ 0 in L2
loc(Ω2)

2, (44)

χΩε
s

(

∇uε −∇xu
0(x, t) −∇yu

1
(

x,
x

ε
, t
)

)

→ 0 in L2
loc(Ω2)

4, (45)

χΩε
2
pε(x, t)− 1

Φε

∫

Ωε
2

pε

1− x2
− χΩε

2
p0(x, t) → 0 in L2

loc(Ω2), (46)

as ε → 0.

The interaction with the fluid in Ω1 doesn’t change the equations. In Ω2 the
system (41)–(42) remains valid. On the other hand, the non-stationary Stokes system
in Ω1 converges towards the linearized incompressible Euler equations. The challenging
difficulty is finding the boundary conditions at the interface Σ. After applying the
technique from [17] and constructing the appropriate boundary layers, we get the
following result:
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Theorem 6. Let u0 and p0 satisfy (41)–(42) in Ω2, (43) in Ω1 ∪ Σ ∪ Ω2, and the
following equations in Σ ∪ Ω1

ρf
∂2u0

∂t2
+∇p0 = ρF in Ω1 × ]0, T [

div u0 = 0 in Ω1 × ]0, T [
[

p0
]

= 0 on Σ× ]0, T [

∂u0
2

∂t
(x1, 0−, t) +

∑

j

e2

∫ t

0

A2j(t− τ)

[

Fj(x1, 0−, τ)− 1

ρf

∂p0

∂xj
(x1, 0−, τ)

−
∂2u0

j

∂τ2
(x1, 0−, t)

]

dτ =
∂u0

2

∂t
(x1, 0+, t) on Σ× ]0, T [.

Then the convergences (44)–(46) take place as ε → 0, with Ω2 replaced by Ω, and Ωε
2

by Ωε
f , respectively.
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[20] W. Jäger and A. Mikelić, On the Interface Boundary Conditions by Beavers, Joseph and

Saffman, SIAM J. Appl. Math., to appear, (1999).
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