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Some Positive Radial Solutions of Elliptic Equation

with a Gradient–Term∗

Božo Vrdoljak†

Abstract. The aim of this paper is to establish the existence and precise approximation of

some positive radial solutions of the equation ∆u+ 1

2
x ·∇u+K(|x|)up = 0, x ∈ R

n, for every

|x| ≥ a > 0. The errors of the approximations will be defined by the functions which can be

sufficiently small for all x, |x| ≥ a.
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1. Introduction

In this paper we study the problem

∆u +
1

2
x · ∇u+K(|x|)up = 0, x ∈ R

n \ {0}, (1)

u(x) > 0,

u(x) → 0 as x→ ∞,

where n ≥ 2, p > 0, K ∈ C(R+,R), R+ = (0,∞). We consider radially symmetric
solutions u which are functions of the variable r = |x| only, so this problem becomes
(in this case ′ = d/dr)

u′′ +

(

n− 1

r
+

1

2
r

)

u′ +K(r)up = 0, r ∈ R
+, (2)

u(r) > 0,

u(r) → 0 as r → ∞.

Many authors have studied the asymptotic behavior of positive radial solutions
of the equation of the form (1). For example, in [5] and [8] is proved, respectively,

u(r) = O

(

r−n exp

(

−
r2

4

))

as r → ∞, 1 < p <
n+ 2

n− 2
, n ≥ 3;
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u(r) = O

(

r(n−1)/2 exp

(

−
r2

8

))

as r → ∞,
n

2
<
p+ 1

p− 1
,

and

u(r) = A exp

(

−
r2

4

)

rk−n
[

1 + (n− k)(k − 2)r−2 + o(r−2)
]

as r → ∞.

In this paper we shall establish existence of positive radial solutions of (1), n ≥ 2,
satisfying conditions

u(r) = O

(

r−n exp

(

−
r2

4

))

as r → ∞, p > 0, (3)

u(r) = O
(

r−n−s exp(−βr2)
)

as r → ∞, s ≥ 0, β ≥
1

4
, 0 < p < 1, (4)

u(r) = O
(

exp(−γrh)
)

as r → ∞, h ≥ 2, γ >
1

2h
, 0 < p < 1, (5)

and their precise approximations for every r ≥ a > 0.

2. Results of this paper

Let a, α, β, γ, η, θ, h ∈ R
+, s ∈ R

+
0 = [0,∞).

Theorem 1. Let

0 < s ≤ 2, a > 2, sas > 4n, p > 0,

|K(r)| ≤ 2−p−1α1−p
(

sasr2−s − 4n
)

rn(p−1)−2 exp

(

1

4
r2(p− 1)

)

, ∀r ≥ a.

Then the equation (1) has at least one positive radial solution u(r) satisfying the con-

ditions

|u(r) − ϕ(r)| < asr−sϕ(r),

|u′(r) − ϕ′(r)| < as
(

n+ s

r
+
r

2

)

r−sϕ(r),

for all r ≥ a, where

ϕ(r) = αr−n exp

(

−
r2

4

)

. (6)

Theorem 2. Let

0 < θ < 1, 0 < p < 1, (7)

(1− θ)1−pκ(r) < −K(r) < (1 + θ)1−pκ(r), ∀r ≥ a.

(i) If

β ≥
1

4
, s ≥ 0, (8)
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κ(r) =

{

(n+ s)(2 + s) +

[

2β(n+ 2s)−
1

2
(n+ s)

]

r2 + β(4β − 1)r4
}

× α1−pr(n+s)(p−1)−2 exp
(

βr2(p− 1)
)

, r ≥ a, (9)

then the equation (1), for 0 < p < 1, has at least one positive radial solution u(r)
satisfying the conditions

|u(r) − ϕ(r)| < θϕ(r), (10)

|u′(r) − ϕ′(r)| < θ

(

2βr +
n+ s

r

)

ϕ(r),

for all r ≥ a, where
ϕ(r) = αr−n−s exp(−βr2). (11)

(ii) If

γ >
1

2h
, h ≥ 2, a > 1, 2γhah − a2 ≥ 2(n+ h− 2), (12)

κ(r) = γh

(

γhrh −
1

2
r2 + 2− n− h

)

α1−prh−2 exp
(

γrh(p− 1)
)

, r ≥ a, (13)

then the equation (1), for 0 < p < 1, has at least one positive radial solution u(r)
satisfying the condition (10), and

|u′(r) − ϕ′(r)| < θγhrh−1ϕ(r),

for all r ≥ a, where
ϕ(r) = α exp(−γrh). (14)

Theorem 3. Let

0 < s < 2, η > 0, ηsa2−s + 1 > (1 + 4nηa−s)p, p > 0,

κ(r) < −K(r) ≤ (1 + ηsr2−s)(1 + 4nηr−s)−pκ(r), ∀r ≥ a,

where

κ(r) = 2nα1−prn(p−1)−2 exp

(

1

4
r2(p− 1)

)

.

Then the equation (1) has at least one positive radial solution u(r) satisfying the con-

ditions

ϕ(r) < u(r) < (1 + 4nηr−s)ϕ(r),

ϕ′(r) − 4nη

(

n+ s

r
+
r

2

)

r−sϕ(r) < u′(r) < ϕ′(r),

for all r ≥ a, where function ϕ(r) is defined by (6).
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Theorem 4. Let

η > 0, 0 < p < 1,

κ(r) < −K(r) < (1 + η)1−pκ(r), ∀r ≥ a.

(i) If (8) holds true and if function κ(r) is defined by (9), then the equation (1),
for 0 < p < 1, has at least one positive radial solution u(r) satisfying the conditions

ϕ(r) < u(r) < (1 + η)ϕ(r), (15)

(1 + η)ϕ′(r) < u′(r) < ϕ′(r), (16)

for all r ≥ a, where function ϕ(r) is defined by (11).

(ii) If (12) holds true and if function κ(r) is defined by (13), then the equa-

tion (1), for 0 < p < 1, has at least one positive radial solution u(r) satisfying the

conditions (15) and (16), ∀r ≥ a, where function ϕ(r) is defined by (14).

Theorem 5. Let

0 < s ≤ 2, a ≥ 2

√

2n

s
, p > 0,

|K(r)| < 2nα1−prn(p−1)−2 exp

(

1

4
r2(p− 1)

)

, ∀r ≥ a.

Then the equation (1) has at least one positive radial solution u(r) satisfying the con-

ditions

(1 − asr−s)ϕ(r) < u(r) < ϕ(r),

ϕ′(r) < u′(r) < ϕ′(r) + as
(

n+ s

r
+
r

2

)

r−sϕ(r),

for all r ≥ a, where function ϕ(r) is defined by (6).

Theorem 6. Let (7) hold true and

(1− θ)1−pκ(r) < −K(r) < κ(r), ∀r ≥ a.

(i) If (8) holds true and if function κ(r) is defined by (9), then the equation (1),
for 0 < p < 1, has at least one positive radial solution u(r) satisfying the conditions

(1− θ)ϕ(r) < u(r) < ϕ(r), (17)

ϕ′(r) < u′(r) < (1− θ)ϕ′(r), (18)

for all r ≥ a, where function ϕ(r) is defined by (11).

(ii) If (12) holds true and if function κ(r) is defined by (13), then the equa-

tion (1), for 0 < p < 1, has at least one positive radial solution u(r) satisfying the

conditions (17) and (18), ∀r ≥ a, where function ϕ(r) is defined by (14).
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3. Proof of Theorems 1–6

We shall study the equation (1) or (2) by means of the equivalent system

u′ = v, v′ = −

(

n− 1

r
+

1

2
r

)

v −K(r)up, r > 0. (19)

According to known theorems, the Cauchy problem for the system (19) has the
unique solution in Ω = R

+ × R× R
+.

Let us consider the behavior of integral curves (u(r), v(r), r) of (19) with respect
to the set Ω and the set of the form

ω =
{

(u, v, r) ∈ Ω
∣

∣ ϕ1(r) < u < ϕ2(r), ψ1(r) < v < ψ2(r), r > a
}

,

where ϕi and ψi are functions such that ϕi, ψi ∈ C1(R+,R), and

0 < ϕ1(r) < ϕ2(r), ψ1(r) < ψ2(r), r > a.

The boundary surfaces of ω are

Ui =
{

T ∈ Clω
∣

∣ Φi := (−1)i(u− ϕi(r)) = 0
}

,

Vi =
{

T ∈ Clω
∣

∣ Ψi := (−1)i(v − ψi(r)) = 0
}

, i = 1, 2.

Let us denote the tangent vector field to an integral curve (u(r), v(r), r) of (19) by X ,
i.e.,

X =

(

v, −

(

n− 1

r
+

1

2
r

)

v −Kup, 1

)

.

The vectors ∇Φi and ∇Ψi, i = 1, 2, are the external normals on surfaces Ui and Vi,
respectively,

∇Φi =
(

(−1)i, 0, (−1)i+1ϕ′

i(r)
)

, ∇Ψi =
(

0, (−1)i, (−1)i+1ψ′

i(r)
)

, i = 1, 2.

By means of scalar products Pi = (∇Φi, X) on Ui, and Qi = (∇Ψi, X) on Vi, i = 1, 2,
we shall establish the behavior of integral curves of the system (19) with respect to
sets ω and Ω.

For proofs of Theorems 1–6 we shall consider the case

ψ1(r) = ϕ′

2(r), ψ2(r) = ϕ′

1(r).

Then we have

P1 ≡ 0 on L = U1 ∩ V2,

P1 = −v + ϕ′

1 > −ψ2 + ϕ′

1 ≡ 0 on U1 \ L,

P2 ≡ 0 on M = U2 ∩ V1,

P2 = v − ϕ′

2 > ψ1 − ϕ′

2 ≡ 0 on U2 \M,
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u′ = v = ψ2 = ϕ′

1 on L,

u′′ = v′ = −

(

n− 1

r
+

1

2
r

)

ϕ′

1 −Kϕp
1 > ϕ′′

1 on L, (20)

u′ = v = ψ1 = ϕ′

2 on M,

u′′ = v′ = −

(

n− 1

r
+

1

2
r

)

ϕ′

2 −Kϕp
2 < ϕ′′

2 on M, (21)

Q1 =

(

n− 1

r
+

1

2
r

)

v +Kup + ψ′

1 =

(

n− 1

r
+

1

2
r

)

ψ1 + ψ′

1 +Kup on V1,

Q2 = −

(

n− 1

r
+

1

2
r

)

v −Kup − ψ′

2 = −

(

n− 1

r
+

1

2
r

)

ψ2 − ψ′

2 −Kup on V2.

The estimates (20) and (21) follow from the corresponding estimates Q2 > 0 on V2
and Q1 > 0 on V1, respectively.

Now, in case of Theorem 1 we have

ϕi(r) = ϕ(r) + (−1)iρ(r), ψi(r) = ϕ′(r) − (−1)iρ′(r), i = 1, 2, (22)

where ϕ(r) = αr−n exp(−r2/4), ρ(r) = asr−sϕ(r), and

Q1 ≥ ϕ′′ + ρ′′ +

(

n− 1

r
+

1

2
r

)

(ϕ′ + ρ′)− |K| (2ϕ)p > 0 on V1,

Q2 ≥ −ϕ′′ + ρ′′ −

(

n− 1

r
+

1

2
r

)

(ϕ′ − ρ′)− |K| (2ϕ)p > 0 on V2.

In case of Theorem 2 we have (22), with ρ(r) = θϕ(r) (where ϕ(r) = αr−n−s exp(−βr2)
in case (i), and ϕ(r) = α exp(−γrh) in case (ii)), and

Q1 ≥ (1 + θ)

[

ϕ′′ +

(

n− 1

r
+

1

2
r

)

ϕ′

]

+K (1 + θ)pϕp > 0 on V1,

Q2 ≥ −(1− θ)

[

ϕ′′ +

(

n− 1

r
+

1

2
r

)

ϕ′

]

−K (1− θ)pϕp > 0 on V2.

Consequently, E = U1 ∪ U2 ∪ V1 ∪ V2 is a set of points of strict exit of integral
curves of (19) with respect to sets Ω and ω. Moreover, the Cauchy problem for the
system (19) has the unique solution in Ω. Hence, according to the retraction method,
the system (19) has at least one solution (u(r), v(r)) which satisfies the conditions

ϕ1(r) < u(r) < ϕ2(r), ψ1(r) < v(r) < ψ2(r), ∀r ≥ a, (23)

or
|u(r) − ϕ(r)| < ρ(r), |v(r) − ϕ′(r)| < −ρ′(r), ∀r ≥ a,
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and that means that Theorems 1 and 2 hold true.

Let us consider now Theorems 3 and 4 analogously. In case of Theorem 3 we have

ϕi(r) = ϕ(r) − (1− i)ρ(r), ψi(r) = ϕ′(r) + (2− i)ρ′(r), i = 1, 2, (24)

where ϕ(r) = αr−n exp(−r2/4), ρ(r) = 4nηr−sϕ(r), and

Q1 ≥ ϕ′′ + ρ′′ +

(

n− 1

r
+

1

2
r

)

(ϕ′ + ρ′) +K (ϕ+ ρ)p > 0 on V1,

Q2 ≥ −ϕ′′ −

(

n− 1

r
+

1

2
r

)

ϕ′ −Kϕp > 0 on V2. (25)

In case of Theorem 4 we have (24), with ρ(r) = ηϕ(r) (the function ϕ is defined in
Theorem 4), and

Q1 ≥ (1 + η)

[

ϕ′′ +

(

n− 1

r
+

1

2
r

)

ϕ′

]

+K (1 + η)pϕp > 0 on V1,

and (25). Now we can note that the corresponding set E = U1∪U2∪V1∪V2 is a set of
points of strict exit of integral curves of (19) with respect to sets Ω and ω. Hence, the
system (19) has at least one solution (u(r), v(r)) satisfying the conditions (23), with
functions ϕi and ψi defined by (24). This means that Theorems 3 and 4 hold true.

Finally, in case of Theorems 5 and 6 we set

ϕi(r) = ϕ(r) − (2− i)ρ(r), ψi(r) = ϕ′(r) + (1− i)ρ′(r), i = 1, 2,

where ρ(r) = asr−sϕ(r) in case of Theorem 5, and ρ(r) = θϕ(r) in case of Theorem 6.
(The function ϕ is defined in Theorems 5 and 6.) Moreover, it is sufficient to notice
that, in case of Theorem 5,

Q1 ≥ ϕ′′ +

(

n− 1

r
+

1

2
r

)

ϕ′ − |K|ϕp > 0 on V1,

Q2 ≥ −ϕ′′ + ρ′′ −

(

n− 1

r
+

1

2
r

)

(ϕ′ − ρ′)− |K|ϕp > 0 on V2,

and, in case of Theorem 6,

Q1 ≥ ϕ′′ +

(

n− 1

r
+

1

2
r

)

ϕ′ +Kϕp > 0 on V1,

Q2 ≥ −(1− θ)

[

ϕ′′ +

(

n− 1

r
+

1

2
r

)

ϕ′

]

−K (1− θ)pϕp > 0 on V2.

This completes the proof.
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4. Remark on the approximation of solutions

In this paper we established existence of some positive radial solutions of (1)
satisfying conditions (3), (4) and (5), and obtained precise estimates of behavior of
these solutions for every r ≥ a > 0. In Theorems 1–6 we have given the complete
answer to the approximation of solutions u(r) whose existence has been established.
The errors of the approximations for solutions u(r) and the first derivative u′(r) are
defined by the function ρ(r) which can be sufficiently small ∀r ≥ a. The function ρ is
of the form

ρ(r) = µr−n−s exp(−βr2), s ≥ 0, β ≥
1

4
,

or

ρ(r) = µ exp(−γrh), γ >
1

2h
, h ≥ 2.

These functions tend to zero as r → ∞ and can be sufficiently small ∀r ≥ a > 0,
because parameter µ > 0 can be arbitrarily small.
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