Dynamic Model of Curved Rods

Josip Tambača* and Zvonimir Tutek ${ }^{\dagger}$

Abstract

The dynamic model of curved rod is obtained as an approximation of oscillations of three-dimensional curved rod-like linearized elastic body. The corresponding convergence result is stated.

AMS subject classification: 35Q72, 74B05, 74H10, 74K10
Key words: linearized elasticity, evolution equation, curved rod model

1. Introduction

In this paper we derive the evolution model of curved rod. The corresponding convergence result is stated. A similar problem in case of plates has been considered by Raoult [6], while Xiao Li-ming [5] derived and justified the evolution model of shells. The method used is a version of the asymptotic expansion method already applied to derivation of equilibrium models of curved rod [2,3]. Problems and results are stated precisely but the proofs are mainly omitted; details can be found in [8].

By $\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$ we denote the canonical basis in \mathbb{R}^{3}. Vectors, vector-valued functions, matrices and matrix-valued functions are denoted by boldface letters. Euclidean inner product and norm of vectors in \mathbb{R}^{n} is denoted by • and \| |, respectively. Repeated index convention is accepted. The dual space of a Hilbert space H is denoted by H^{\prime}. The same symbol ' stands for the derivative with respect to the longitudinal variable; partial derivatives with respect to space and time variables are denoted by ∂_{i}, $i=1,2,3$ and $\partial_{t}, \partial_{t t}$, respectively.

2. The curved rod

Let \mathcal{C} be a simple regular curve in \mathbb{R}^{3} defined by its natural parametrization $\boldsymbol{\Phi} \in C^{3}\left([0, \ell] ; \mathbb{R}^{3}\right)$. The tangent on \mathcal{C} at $\boldsymbol{\Phi}\left(y^{1}\right)$ is defined by $\boldsymbol{t}\left(y^{1}\right)=\boldsymbol{\Phi}^{\prime}\left(y^{1}\right)$; obviously $\boldsymbol{t} \in C^{2}\left([0, \ell] ; \mathbb{R}^{3}\right)$. In [4] it is proved that there exists a matrix-valued function $\mathbf{Q} \in$ $C^{2}([0, \ell] ; \mathrm{SO}(3))$ such that

$$
\mathbf{Q} e_{1}=\boldsymbol{t} \quad \text { on }[0, \ell] .
$$

[^0]Then the local basis $\left\{\boldsymbol{t}\left(y^{1}\right), \boldsymbol{n}\left(y^{1}\right), \boldsymbol{b}\left(y^{1}\right)\right\}$ on \mathcal{C} at $\boldsymbol{\Phi}\left(y^{1}\right)$ can be defined by

$$
\boldsymbol{t}\left(y^{1}\right)=\mathbf{Q}\left(y^{1}\right) \boldsymbol{e}_{1}, \quad \boldsymbol{n}\left(y^{1}\right)=\mathbf{Q}\left(y^{1}\right) \boldsymbol{e}_{2}, \quad \boldsymbol{b}\left(y^{1}\right)=\mathbf{Q}\left(y^{1}\right) \boldsymbol{e}_{3}, \quad y^{1} \in[0, \ell] .
$$

Smoothness of \mathbf{Q} implies that $\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b} \in C^{2}\left([0, \ell] ; \mathbb{R}^{3}\right)$. Note that this basis exists even though the smooth Frenet frame does not exist globally. Let

$$
\mathbf{R}\left(y^{1}\right)=\left(\frac{d}{d y^{1}} \mathbf{Q}^{T}\left(y^{1}\right)\right) \mathbf{Q}\left(y^{1}\right), \quad y^{1} \in[0, \ell] .
$$

Matrix $\mathbf{R}\left(y^{1}\right)$ is antisymmetric for all $y^{1} \in[0, \ell]$. Moreover, the following generalization of the Frenet equations holds:

$$
\frac{d}{d y^{1}} \mathbf{Q}^{T}=\mathbf{R Q}^{T}
$$

In case of generic curve $\left(\left|\boldsymbol{\Phi}^{\prime \prime}\right|>0\right)$, matrix-valued function \mathbf{Q} can be chosen so that $(\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b})$ and the Frenet frame coincide. In this case it holds

$$
\mathbf{R}=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)
$$

where κ is the curvature and τ is the torsion of the curve \mathcal{C}.
Now we define the domain in \mathbb{R}^{3} which represents the curved rod. Let $\varepsilon>0$ be a small parameter and let $S \subset \mathbb{R}^{2}$ be a bounded domain with Lipschitz boundary; points in S are denoted by $\left(z^{2}, z^{3}\right)$. The coordinates z^{2} and z^{3} can be chosen so that $(0,0)$ is the center of mass of S, i.e.,

$$
\begin{equation*}
\int_{S} z^{2} d z^{2} d z^{3}=\int_{S} z^{3} d z^{2} d z^{3}=0 \tag{1}
\end{equation*}
$$

Let

$$
\Omega^{\varepsilon}=(0, \ell) \times \varepsilon S, \quad \Gamma^{\varepsilon}=(0, \ell) \times \varepsilon \partial S, \quad B_{y^{1}}^{\varepsilon}=\left\{y^{1}\right\} \times \varepsilon S .
$$

Γ^{ε} is the lateral boundary, ℓ is the length, $B_{y^{1}}^{\varepsilon}$ is the cross-section at $y^{1} \in[0, \ell]$, while ε is the thickness of the cylinder $\Omega^{\varepsilon} . B_{0}^{\varepsilon}$ and B_{ℓ}^{ε} are called the bases of the rod. Let $\boldsymbol{P}: \bar{\Omega}^{\varepsilon} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\boldsymbol{P}(y)=\boldsymbol{\Phi}\left(y^{1}\right)+y^{2} \boldsymbol{n}\left(y^{1}\right)+y^{3} \boldsymbol{b}\left(y^{1}\right), \quad y^{1} \in[0, \ell],\left(y^{2}, y^{3}\right) \in \overline{\varepsilon S} .
$$

Since \mathcal{C} is simple and regular curve, there exists $\varepsilon_{0}>0$ such that the function \boldsymbol{P} is injective; especially one has

$$
g(y)=(\operatorname{det} \nabla \boldsymbol{P}(y))^{2}=\left(1-R_{12}\left(y^{1}\right) y^{2}-R_{13} y^{3}\right)^{2}>0, \quad y \in \Omega^{\varepsilon} .
$$

In the sequel we restrict ourselves to $\varepsilon \in\left(0, \varepsilon_{0}\right)$. The domain, see Figure 1,

$$
\widetilde{\Omega}^{\varepsilon}=\boldsymbol{P}\left(\Omega^{\varepsilon}\right)
$$

is called the curved rod; its lateral boundary and its cross-sections at $\boldsymbol{\Phi}\left(y^{1}\right)$ are, respectively,

$$
\widetilde{\Gamma}^{\varepsilon}=\boldsymbol{P}\left(\Gamma^{\varepsilon}\right), \quad \widetilde{B}_{y^{1}}^{\varepsilon}=\boldsymbol{P}\left(B_{y^{1}}^{\varepsilon}\right) .
$$

$\widetilde{B}_{0}^{\varepsilon}$ and $\widetilde{B}_{\ell}^{\varepsilon}$ are the bases of $\widetilde{\Omega}^{\varepsilon}$. Because of (1), the curve \mathcal{C} passes through the centers of mass of $\widetilde{B}_{y^{1}}^{\varepsilon}, y^{1} \in[0, \ell]$, thus we say that \mathcal{C} is the middle curve of the curved rod $\widetilde{\Omega}^{\varepsilon}$.

Figure 1. Canonical domain, thin cylinder and curved rod.

3. The three-dimensional evolution equations

We assume that $\overline{\widetilde{\Omega}}^{\varepsilon}$ is the natural state of a linearized isotropic elastic body with the Lamé constants λ and μ. Let $\widetilde{\Omega}^{\varepsilon}$ be clamped on its bases $\widetilde{B}_{0}^{\varepsilon}$ and $\widetilde{B}_{\ell}^{\varepsilon}$ and force-free on its lateral boundary $\widetilde{\Gamma}^{\varepsilon}$, and let $\widetilde{\boldsymbol{U}}_{0}^{\varepsilon}$ and $\widetilde{\boldsymbol{U}}_{1}^{\varepsilon}$ be the initial displacement and velocity of $\widetilde{\Omega}^{\varepsilon}$, respectively. Let $T>0$. Then the oscillations of $\widetilde{\Omega}^{\varepsilon}$ are described by a function $\tilde{\boldsymbol{U}}^{\varepsilon}$ which is formally a solution of

$$
\begin{aligned}
& \tilde{\varrho}^{\varepsilon} \partial_{t t} \widetilde{\boldsymbol{U}}^{\varepsilon}-\operatorname{div}\left(\lambda \operatorname{tr} \mathbf{e}\left(\widetilde{\boldsymbol{U}}^{\varepsilon}\right) \mathbf{I}+2 \mu \mathbf{e}\left(\widetilde{\boldsymbol{U}}^{\varepsilon}\right)\right)=\widetilde{\boldsymbol{F}}^{\varepsilon} \quad \text { in }(0, T) \times \widetilde{\Omega}^{\varepsilon}, \\
& \widetilde{\boldsymbol{U}}^{\varepsilon}=0 \quad \text { on }(0, T) \times\left(\widetilde{B}_{0}^{\varepsilon} \cup \widetilde{B}_{\ell}^{\varepsilon}\right), \\
& \lambda \operatorname{tr}\left(\mathbf{e}\left(\widetilde{\boldsymbol{U}}^{\varepsilon}\right)\right) \widetilde{\boldsymbol{\nu}}+2 \mu \mathbf{e}\left(\widetilde{\boldsymbol{U}}^{\varepsilon}\right) \widetilde{\boldsymbol{\nu}}=0 \quad \text { on }(0, T) \times \widetilde{\Gamma}^{\varepsilon}, \\
& \left.\widetilde{\boldsymbol{U}}^{\varepsilon}\right|_{t=0}=\widetilde{\boldsymbol{U}}_{0}^{\varepsilon},\left.\quad \partial_{t} \widetilde{\boldsymbol{U}}^{\varepsilon}\right|_{t=0}=\widetilde{\boldsymbol{U}}_{1}^{\varepsilon} \quad \text { in } \widetilde{\Omega}^{\varepsilon} .
\end{aligned}
$$

Here $\widetilde{\boldsymbol{F}}^{\varepsilon}$ is the volume force density acting on the curved rod, $\tilde{\varrho}^{\varepsilon}$ is the mass density of the rod, $\widetilde{\boldsymbol{\nu}}$ is the unit outer normal at the boundary of the curved rod, and $\mathbf{e}(\widetilde{\boldsymbol{V}})$ denotes the symmetrized gradient of the function $\widetilde{\boldsymbol{V}}$, i.e.,

$$
\mathbf{e}(\tilde{\boldsymbol{V}})=\frac{1}{2}\left(\nabla \tilde{\boldsymbol{V}}+(\nabla \tilde{\boldsymbol{V}})^{T}\right) .
$$

More precisely, let us introduce the function space

$$
\mathcal{V}\left(\widetilde{\Omega}^{\varepsilon}\right)=\left\{\widetilde{\boldsymbol{V}} \in H^{1}\left(\widetilde{\Omega}^{\varepsilon}\right)^{3}|\widetilde{\boldsymbol{V}}|_{\widetilde{B}_{0}^{\varepsilon}}=\left.\widetilde{\boldsymbol{V}}\right|_{\widetilde{B}_{\ell}^{\varepsilon}}=0\right\},
$$

which is a Hilbert space for the scalar product of $H^{1}(\Omega)^{3}$. Differential equations are then formally equivalent to:

$$
\begin{align*}
\int_{\widetilde{\Omega}^{\varepsilon}} \tilde{\varrho}^{\varepsilon} \partial_{t t} \widetilde{\boldsymbol{U}}^{\varepsilon} \cdot \tilde{\boldsymbol{V}} d x+\int_{\widetilde{\Omega}^{\varepsilon}} & \lambda \operatorname{tr} \mathbf{e}\left(\tilde{\boldsymbol{U}}^{\varepsilon}\right) \operatorname{tr} \mathbf{e}(\tilde{\boldsymbol{V}})+2 \mu \mathbf{e}\left(\widetilde{\boldsymbol{U}}^{\varepsilon}\right) \cdot \mathbf{e}(\tilde{\boldsymbol{V}}) d x \\
& =\int_{\widetilde{\Omega}^{\varepsilon}} \widetilde{\boldsymbol{F}}^{\varepsilon} \cdot \widetilde{\boldsymbol{V}} d x, \quad \widetilde{\boldsymbol{V}} \in \mathcal{V}\left(\widetilde{\Omega}^{\varepsilon}\right), \quad 0<t<T, \tag{2}\\
\left.\widetilde{\boldsymbol{U}}^{\varepsilon}\right|_{t=0}=\widetilde{\boldsymbol{U}}_{0}^{\varepsilon},\left.\quad \partial_{t} \widetilde{\boldsymbol{U}}^{\varepsilon}\right|_{t=0} & =\widetilde{\boldsymbol{U}}_{1}^{\varepsilon} \tag{3}
\end{align*}
$$

Lemma 1. Let $\widetilde{\boldsymbol{F}}^{\varepsilon} \in L^{2}\left(0, T ; L^{2}\left(\widetilde{\Omega}^{\varepsilon}\right)^{3}\right)$, $\tilde{\boldsymbol{U}}_{0}^{\varepsilon} \in \mathcal{V}\left(\widetilde{\Omega}^{\varepsilon}\right)$ and $\tilde{\boldsymbol{U}}_{1}^{\varepsilon} \in L^{2}\left(\widetilde{\Omega}^{\varepsilon}\right)^{3}$. Then there exists a unique solution $\widetilde{\boldsymbol{U}}^{\varepsilon}$ of the problem (2), (3), such that

$$
\tilde{\boldsymbol{U}}^{\varepsilon} \in C\left([0, T] ; \mathcal{V}\left(\widetilde{\Omega}^{\varepsilon}\right)\right), \quad \partial_{t} \tilde{\boldsymbol{U}}^{\varepsilon} \in C\left([0, T] ; L^{2}\left(\widetilde{\Omega}^{\varepsilon}\right)\right), \quad \partial_{t t} \tilde{\boldsymbol{U}}^{\varepsilon} \in L^{2}\left(0, T ; \mathcal{V}\left(\widetilde{\Omega}^{\varepsilon}\right)^{\prime}\right)
$$

At the end of this section we rewrite (2), (3) in curvilinear coordinates defined by \boldsymbol{P}. Covariant basis of the curved rod is defined by

$$
\boldsymbol{g}_{i}=\partial_{i} \boldsymbol{P}: \Omega^{\varepsilon} \rightarrow \mathbb{R}^{3}, \quad i=1,2,3
$$

Vectors $\left(\boldsymbol{g}^{1}, \boldsymbol{g}^{2}, \boldsymbol{g}^{3}\right)$ satisfying

$$
\boldsymbol{g}^{j} \cdot \boldsymbol{g}_{i}=\delta_{i}^{j} \quad \text { on } \widetilde{\Omega}^{\varepsilon}, \quad i, j=1,2,3,
$$

where δ_{i}^{j} is the Kronecker symbol, form the contravariant basis on $\widetilde{\Omega}^{\varepsilon}$. The contravariant metric tensor $\mathbf{G}=\left(g^{i j}\right)$ and the Christoffel symbols $\Gamma_{j k}^{i}$ of the curved rod $\widetilde{\Omega}^{\varepsilon}$ are defined by

$$
g^{i j}=\boldsymbol{g}^{i} \cdot \boldsymbol{g}^{j}, \quad \Gamma_{j k}^{i}=\boldsymbol{g}^{i} \cdot \partial_{j} \boldsymbol{g}_{k} \quad \text { on } \widetilde{\Omega}^{\varepsilon}, \quad i, j, k=1,2,3 .
$$

The corresponding function space to $\mathcal{V}\left(\widetilde{\Omega}^{\varepsilon}\right)$ is the space

$$
\mathcal{V}\left(\Omega^{\varepsilon}\right)=\left\{\boldsymbol{V} \in H^{1}\left(\Omega^{\varepsilon}\right)^{3}|\boldsymbol{V}|_{B_{0}^{\varepsilon}}=\left.\boldsymbol{V}\right|_{B_{\ell}^{\varepsilon}}=0\right\} .
$$

The displacements and velocities are rewritten in contravariant basis, while the force density in covariant basis

$$
\begin{gathered}
\tilde{\boldsymbol{U}}^{\varepsilon} \circ \boldsymbol{P}=U_{i}^{\varepsilon} \boldsymbol{g}^{i}, \quad \widetilde{\boldsymbol{U}}_{0}^{\varepsilon} \circ \boldsymbol{P}=\left(U_{0}^{\varepsilon}\right)_{i} \boldsymbol{g}^{i}, \quad \tilde{\boldsymbol{U}}_{1}^{\varepsilon} \circ \boldsymbol{P}=\left(U_{1}^{\varepsilon}\right)_{i} \boldsymbol{g}^{i}, \\
\tilde{\boldsymbol{V}} \circ \boldsymbol{P}=V_{i} \boldsymbol{g}^{i}, \quad \widetilde{\boldsymbol{F}}^{\varepsilon} \circ \boldsymbol{P}=F^{\varepsilon i} \boldsymbol{g}_{i} .
\end{gathered}
$$

We define vector functions

$$
\boldsymbol{U}^{\varepsilon}=U_{i}^{\varepsilon} \boldsymbol{e}_{i}, \quad \boldsymbol{U}_{0}^{\varepsilon}=\left(U_{0}^{\varepsilon}\right)_{i} \boldsymbol{e}_{i}, \quad \boldsymbol{U}_{1}^{\varepsilon}=\left(U_{1}^{\varepsilon}\right)_{i} \boldsymbol{e}_{i}, \quad \boldsymbol{V}=V_{i} \boldsymbol{e}_{i}, \quad \boldsymbol{F}^{\varepsilon}=F^{\varepsilon i} \boldsymbol{e}_{i}
$$

Let $\varrho^{\varepsilon}=\tilde{\varrho}^{\varepsilon} \circ \boldsymbol{P}$ and

$$
\begin{aligned}
\gamma(\boldsymbol{V}) & =\mathbf{e}(\boldsymbol{V})-V_{i} \boldsymbol{\Gamma}^{i} \\
\mathbf{A} \boldsymbol{\sigma}^{1} \cdot \boldsymbol{\sigma}^{2} & =\lambda \operatorname{tr} \boldsymbol{\sigma}^{1} \operatorname{tr} \boldsymbol{\sigma}^{2}+2 \mu \boldsymbol{\sigma}^{1} \cdot \boldsymbol{\sigma}^{2}, \quad \boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2} \in \operatorname{Sym}\left(\mathbb{R}^{3}\right),
\end{aligned}
$$

where $\operatorname{Sym}\left(\mathbb{R}^{3}\right)$ denotes the space of all real symmetric matrices of order 3 . The system (2), (3) is then equivalent to the following equation of motion in curvilinear coordinates:

$$
\begin{align*}
& \int_{\Omega^{\varepsilon}} \varrho^{\varepsilon} \mathbf{G} \partial_{t t} \boldsymbol{U}^{\varepsilon} \cdot \boldsymbol{V} \sqrt{g} d y+\int_{\Omega^{\varepsilon}} \mathbf{A} \gamma\left(\boldsymbol{U}^{\varepsilon}\right) \cdot \gamma(\boldsymbol{V}) \sqrt{g} d y \\
& =\int_{\Omega^{\varepsilon}} \boldsymbol{F}^{\varepsilon} \cdot \boldsymbol{V} \sqrt{g} d y, \quad \boldsymbol{V} \in \mathcal{V}\left(\Omega^{\varepsilon}\right), \quad 0<t<T
\end{aligned}, \quad \begin{aligned}
& \left.\boldsymbol{U}^{\varepsilon}\right|_{t=0}=\boldsymbol{U}_{0}^{\varepsilon},\left.\quad \partial_{t} \boldsymbol{U}^{\varepsilon}\right|_{t=0}=\boldsymbol{U}_{1}^{\varepsilon} . \tag{4}
\end{align*}
$$

4. A priori estimates on fixed domain

Our main goal is to find the limit of $\left(\widetilde{\boldsymbol{U}}^{\varepsilon}, \varepsilon>0\right)$ as ε tends to zero, as well as the equations satisfied by the limit. Problems for both $\widetilde{\boldsymbol{U}}^{\varepsilon}$ and $\boldsymbol{U}^{\varepsilon}$ are posed on ε dependent domains. Now we transform the problem (4), (5) to ε-independent domain, see Figure 1. As a consequence, the coefficients of the resulting weak formulation will depend on ε explicitly, and calculation of the limit will be enabled.

Let $\Omega=(0, \ell) \times S$, and let $\boldsymbol{R}^{\varepsilon}: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\boldsymbol{R}^{\varepsilon}(z)=\left(z^{1}, \varepsilon z^{2}, \varepsilon z^{3}\right), \quad z \in \Omega, \quad \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

By Γ and $S_{z^{1}}$ we denote the lateral surface of Ω and its cross-section at $z^{1} \in[0, \ell]$, respectively. To the functions $\boldsymbol{U}^{\varepsilon}, \boldsymbol{U}_{0}^{\varepsilon}, \boldsymbol{U}_{1}^{\varepsilon}, \boldsymbol{F}^{\varepsilon}, g, \boldsymbol{g}_{i}, \boldsymbol{g}^{i}, \varrho^{\varepsilon}, \mathbf{G}, \mathbf{R}, \Gamma_{j k}^{i}, i, j, k=1,2,3$, defined on Ω^{ε}, we associate the functions $\boldsymbol{u}(\varepsilon)$, $\boldsymbol{u}_{0}(\varepsilon)$, $\boldsymbol{u}_{1}(\varepsilon), \boldsymbol{f}(\varepsilon), g(\varepsilon), \boldsymbol{g}_{i}(\varepsilon), \boldsymbol{g}^{i}(\varepsilon)$, $\varrho(\varepsilon), \mathbf{G}(\varepsilon), \mathbf{R}(\varepsilon), \Gamma_{j k}^{i}(\varepsilon), i, j, k=1,2,3$, defined on Ω by composition with $\boldsymbol{R}^{\varepsilon}$. Let

$$
\begin{aligned}
& \mathcal{V}(\Omega)=\left\{\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right) \in H^{1}(\Omega)^{3}|\boldsymbol{v}|_{B_{0}}=\left.\boldsymbol{v}\right|_{B_{\ell}}=0\right\}, \\
& a(\varepsilon): \mathcal{V}(\Omega) \times \mathcal{V}(\Omega) \rightarrow \mathbb{R}, \quad a(\varepsilon)(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \mathbf{A}(\varepsilon) \frac{1}{\varepsilon} \boldsymbol{\gamma}^{\varepsilon}(\boldsymbol{v}) \cdot \frac{1}{\varepsilon} \boldsymbol{\gamma}^{\varepsilon}(\boldsymbol{w}) \sqrt{g(\varepsilon)} d z, \\
& b(\varepsilon): L^{2}(\Omega)^{3} \times L^{2}(\Omega)^{3} \rightarrow \mathbb{R}, \quad b(\varepsilon)(\boldsymbol{v}, \boldsymbol{w})=\int_{\Omega} \frac{1}{\varepsilon^{2}} \varrho(\varepsilon) \mathbf{G}(\varepsilon) \boldsymbol{v} \cdot \boldsymbol{w} \sqrt{g(\varepsilon)} d z, \\
& \boldsymbol{\gamma}^{\varepsilon}(\boldsymbol{v})=\frac{1}{\varepsilon} \gamma_{z}(\boldsymbol{v})+\boldsymbol{\gamma}_{y}(\boldsymbol{v})-v_{i} \boldsymbol{\Gamma}^{i}(\varepsilon), \\
& \boldsymbol{\gamma}_{y}(\boldsymbol{v})=\left(\begin{array}{ccc}
\partial_{1} v_{1} & \frac{1}{2} \partial_{1} v_{2} & \frac{1}{2} \partial_{1} v_{3} \\
\frac{1}{2} \partial_{1} v_{2} & 0 & 0 \\
\frac{1}{2} \partial_{1} v_{3} & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\gamma}_{z}(\boldsymbol{v})=\left(\begin{array}{ccc}
0 & \frac{1}{2} \partial_{2} v_{1} & \frac{1}{2} \partial_{3} v_{1} \\
\frac{1}{2} \partial_{2} v_{1} & \partial_{2} v_{2} & \frac{1}{2}\left(\partial_{2} v_{3}+\partial_{3} v_{2}\right) \\
\frac{1}{2} \partial_{3} v_{1} & \frac{1}{2}\left(\partial_{2} v_{3}+\partial_{3} v_{2}\right) & \partial_{3} v_{3}
\end{array}\right), \\
& \mathbf{A}(\varepsilon) \boldsymbol{\sigma}^{1} \cdot \boldsymbol{\sigma}^{2}=\lambda \operatorname{tr} \mathbf{G}(\varepsilon) \boldsymbol{\sigma}^{1} \operatorname{tr} \mathbf{G}(\varepsilon) \boldsymbol{\sigma}^{2}+2 \mu \mathbf{G}(\varepsilon) \boldsymbol{\sigma}^{1} \mathbf{G}(\varepsilon) \cdot \boldsymbol{\sigma}^{2}, \quad \boldsymbol{\sigma}^{1}, \boldsymbol{\sigma}^{2} \in \operatorname{Sym}\left(\mathbb{R}^{3}\right) .
\end{aligned}
$$

The problem (4), (5) is then equivalent to the following problem:
Find $\boldsymbol{u}(\varepsilon)$ such that

$$
\begin{align*}
& \frac{d}{d t} b(\varepsilon)\left(\partial_{t} \boldsymbol{u}(\varepsilon), \boldsymbol{v}\right)+a(\varepsilon)(\boldsymbol{u}(\varepsilon), \boldsymbol{v})=\left(\left.\frac{1}{\varepsilon^{2}} \boldsymbol{f}(\varepsilon) \sqrt{g(\varepsilon)} \right\rvert\, \boldsymbol{v}\right)_{L^{2}(\Omega)^{3}} \\
& \boldsymbol{v} \in \mathcal{V}(\Omega), \quad 0<t<T \tag{6}\\
& \left.\boldsymbol{u}(\varepsilon)\right|_{t=0}=\boldsymbol{u}_{0}(\varepsilon),\left.\quad \partial_{t} \boldsymbol{u}(\varepsilon)\right|_{t=0}=\boldsymbol{u}_{1}(\varepsilon) . \tag{7}
\end{align*}
$$

The family $\left(\boldsymbol{u}(\varepsilon), 0<\varepsilon<\varepsilon_{0}\right)$ satisfies

$$
\boldsymbol{u}(\varepsilon) \in C([0, T] ; \mathcal{V}(\Omega)), \quad \partial_{t} \boldsymbol{u}(\varepsilon) \in C\left([0, T] ; L^{2}(\Omega)^{3}\right), \quad \partial_{t t} \boldsymbol{u}(\varepsilon) \in L^{2}\left(0, T ; \mathcal{V}(\Omega)^{\prime}\right)
$$

In general, this family is not bounded with respect to ε. The conditions ensuring certain uniform boundedness are stated in the following theorem.

Theorem 1 (a priori estimates). Let us assume that

$$
\begin{gather*}
\boldsymbol{f}(\varepsilon)=\varepsilon^{2} \boldsymbol{f}, \quad \varrho(\varepsilon)=\varepsilon^{2} \varrho \tag{8}\\
\left\|\frac{1}{\varepsilon} \gamma^{\varepsilon}\left(\boldsymbol{u}_{0}(\varepsilon)\right)\right\|_{L^{2}(\Omega)^{9}} \leq C_{u}, \quad \boldsymbol{u}_{1}(\varepsilon) \longrightarrow \boldsymbol{u}_{1} \quad \text { weakly in } L^{2}(\Omega)^{3}, \tag{9}
\end{gather*}
$$

where ϱ and C_{u} are constants independent of ε. Then there exists $C>0$ such that

$$
\begin{equation*}
\|\boldsymbol{u}(\varepsilon)\|_{\mathcal{V}(\Omega)} \leq C, \quad\left\|\partial_{t} \boldsymbol{u}(\varepsilon)\right\|_{L^{2}(\Omega)^{3}} \leq C, \quad\left\|\frac{1}{\varepsilon} \gamma^{\varepsilon}(\boldsymbol{u}(\varepsilon))\right\|_{L^{2}(\Omega)^{9}} \leq C, \quad \varepsilon \in\left(0, \varepsilon_{0}\right) \tag{10}
\end{equation*}
$$

Proof of Theorem 1 is long and we omit it here; details can be found in [8]. A simple consequence of a priori estimate (10) and smoothness of $\boldsymbol{u}(\varepsilon)$ is the following convergence result.

Corollary 1. There is a subsequence of $(\boldsymbol{u}(\varepsilon), \varepsilon>0)$ (still denoted by ε) and functions \boldsymbol{u} and $\boldsymbol{\gamma}, \boldsymbol{u} \in L^{\infty}(0, T ; \mathcal{V}(\Omega)), \partial_{t} \boldsymbol{u} \in L^{\infty}\left(0, T ; L^{2}(\Omega)^{3}\right), \gamma \in L^{\infty}\left(0, T ; L^{2}(\Omega)^{9}\right)$, such that

$$
\begin{aligned}
& \boldsymbol{u}(\varepsilon) \stackrel{*}{\longrightarrow} \boldsymbol{u} \quad \text { weak } * \text { in } L^{\infty}(0, T ; \mathcal{V}(\Omega)), \\
& \partial_{t} \boldsymbol{u}(\varepsilon) \stackrel{*}{\longrightarrow} \partial_{t} \boldsymbol{u} \quad \text { weak } * \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)^{3}\right), \\
& \frac{1}{\varepsilon} \gamma^{\varepsilon}(\boldsymbol{u}(\varepsilon)) \stackrel{*}{\longrightarrow} \boldsymbol{\gamma} \quad \text { weak } * \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)^{9}\right) .
\end{aligned}
$$

5. The limit problem

The relevant function spaces for description of the limit problem are the following Hilbert spaces
$V_{0}=H_{0}^{1}(0, \ell) \times H_{0}^{2}(0, \ell) \times H_{0}^{2}(0, \ell), \quad \mathcal{V}_{0}=\left\{\boldsymbol{v} \in V_{0} \mid v_{1}^{\prime}-R_{12} v_{2}-R_{13} v_{3}=0\right\}$,
$H_{0}=L^{2}(0, \ell)^{3}, \quad \mathcal{H}_{0}=\left\{\boldsymbol{v} \in H_{0}^{1}(0, \ell) \times L^{2}(0, \ell) \times L^{2}(0, \ell) \mid v_{1}^{\prime}-R_{12} v_{2}-R_{13} v_{3}=0\right\}$,
$W_{0}=V_{0} \times H_{0}^{1}(0, \ell), \quad \mathcal{W}_{0}=\mathcal{V}_{0} \times H_{0}^{1}(0, \ell)$,
with norms

$$
\begin{aligned}
\|\boldsymbol{v}\|_{V_{0}}^{2} & =\left\|v_{1}^{\prime}\right\|_{L^{2}(0, \ell)}^{2}+\left\|v_{2}^{\prime \prime}\right\|_{L^{2}(0, \ell)}^{2}+\left\|v_{3}^{\prime \prime}\right\|_{L^{2}(0, \ell)}^{2} \\
\|\boldsymbol{v}\|_{H_{0}}^{2} & =\left\|v_{1}\right\|_{L^{2}(0, \ell)}^{2}+\left\|v_{2}\right\|_{L^{2}(0, \ell)}^{2}+\left\|v_{3}\right\|_{L^{2}(0, \ell)}^{2} \\
\|\mathbf{v}\|_{W_{0}}^{2} & =\|\boldsymbol{v}\|_{V_{0}}^{2}+\left\|\psi^{\prime}\right\|_{L^{2}(0, \ell)}^{2}, \quad \mathbf{v}=(\boldsymbol{v}, \psi) \in W_{0}
\end{aligned}
$$

V_{0} is the usual function space for rods, but the limit displacement from Corollary 1 describes the inextensible oscillations of the rod, i.e., it belongs to the subspace \mathcal{V}_{0} of V_{0}. Also note that \mathcal{H}_{0} is the closure of \mathcal{V}_{0} in the norm of H_{0}.

Let us introduce bilinear forms $a_{0}: W_{0} \times W_{0} \rightarrow \mathbb{R}$ and $b_{0}: H_{0} \times H_{0} \rightarrow \mathbb{R}$ by

$$
a_{0}(\mathbf{v}, \mathbf{w}):=\int_{0}^{\ell} \mathbf{H} \boldsymbol{a}(\mathbf{v}) \cdot \boldsymbol{a}(\mathbf{w}) d z^{1}, \quad b_{0}(\boldsymbol{v}, \boldsymbol{w}):=(\varrho A \boldsymbol{v} \mid \boldsymbol{w})_{H_{0}}
$$

where $\boldsymbol{a}(\mathbf{v})$ is defined for $\mathbf{v}=(\boldsymbol{v}, \psi) \in W_{0}$ by

$$
\begin{aligned}
& a_{1}(\mathbf{v})=\psi^{\prime}+R_{12}\left(v_{3}^{\prime}+R_{13} v_{1}+R_{23} v_{2}\right)-R_{13}\left(v_{2}^{\prime}+R_{12} v_{1}-R_{23} v_{3}\right), \\
& a_{2}(\mathbf{v})=-\left(v_{3}^{\prime}+R_{13} v_{1}+R_{23} v_{2}\right)^{\prime}+R_{12} \psi-R_{23}\left(v_{2}^{\prime}+R_{12} v_{1}-R_{23} v_{3}\right), \\
& a_{3}(\mathbf{v})=-\left(v_{2}^{\prime}+R_{12} v_{1}-R_{23} v_{3}\right)^{\prime}-R_{13} \psi+R_{23}\left(v_{3}^{\prime}+R_{13} v_{1}+R_{23} v_{2}\right) .
\end{aligned}
$$

The positive definite symmetric matrix \mathbf{H} depends on geometry of the rod and on its elastic properties. Precisely, let the moments of inertia of the cross-section S and the area of S be denoted by

$$
I_{23}=-\int_{S} z^{2} z^{3} d z^{2} d z^{3}, \quad I_{\alpha}=\int_{S}\left(z^{\alpha}\right)^{2} d z^{2} d z^{3}, \quad \alpha=2,3, \quad A=\int_{S} d z^{2} d z^{3}
$$

and let $p \in H^{1}(S)$ be the warping function, i.e., a unique solution of the problem

$$
\Delta p=0 \quad \text { in } S, \quad \frac{\partial p}{\partial \boldsymbol{\nu}}=\binom{z^{3}}{-z^{2}} \cdot \boldsymbol{\nu} \quad \text { on } \partial S, \quad \int_{S} p d z^{2} d z^{3}=0
$$

where $\boldsymbol{\nu}$ denotes the unit outer normal on S. It can be shown that the number

$$
K=\int_{S}\left(\left(\partial_{2} p-z^{3}\right)^{2}+\left(\partial_{3} p+z^{2}\right)^{2}\right) d z^{2} d z^{3}
$$

is positive; μK is called the torsion rigidity. Now,

$$
\mathbf{H}=\left(\begin{array}{ccc}
\mu K & 0 & 0 \\
0 & E I_{3} & -E I_{23} \\
0 & -E I_{23} & E I_{2}
\end{array}\right),
$$

where E is the Young modulus.
Theorem 2. Let us assume that

$$
\begin{equation*}
\boldsymbol{u}_{0}(\varepsilon) \longrightarrow \boldsymbol{u}_{0} \quad \text { weakly in } \mathcal{V}(\Omega), \quad \boldsymbol{u}_{1} \in \mathcal{H}_{0} \tag{11}
\end{equation*}
$$

Let \boldsymbol{u} and $\boldsymbol{\gamma}$ be the limits from Corollary 1. Then there exists $\phi \in L^{\infty}\left(0, T ; H_{0}^{1}(0, \ell)\right)$ such that $\mathbf{u}=(\boldsymbol{u}, \phi)$ satisfies

$$
\begin{align*}
& \boldsymbol{u} \in L^{\infty}\left(0, T ; \mathcal{V}_{0}\right), \quad \partial_{t} \boldsymbol{u} \in L^{\infty}\left(0, T ; \mathcal{H}_{0}\right), \quad \partial_{t t} \boldsymbol{u} \in L^{2}\left(0, T ; \mathcal{V}_{0}^{\prime}\right), \\
& \frac{d}{d t} b_{0}\left(\partial_{t} \boldsymbol{u}, \boldsymbol{v}\right)+a_{0}(\mathbf{u}, \mathbf{v})=(\overline{\boldsymbol{f}} \mid \boldsymbol{v})_{H_{0}}, \quad \mathbf{v}=(\boldsymbol{v}, \psi) \in \mathcal{W}_{0}, \tag{12}\\
& \boldsymbol{u}(0)=\boldsymbol{u}_{0}, \quad \partial_{t} \boldsymbol{u}(0)=\boldsymbol{u}_{1} \tag{13}
\end{align*}
$$

where

$$
\overline{\boldsymbol{f}}=\int_{S} \boldsymbol{f} d z^{2} d z^{3} \in L^{2}\left(0, T ; \mathcal{H}_{0}\right)
$$

Moreover, the limit function γ is of the form

$$
\gamma=\left(\begin{array}{ccc}
a_{3}(\mathbf{u}) z^{2}+a_{2}(\mathbf{u}) z^{3} & \cdot & \cdot \\
\frac{1}{2} a_{1}(\mathbf{u})\left(\partial_{2} p-z^{3}\right) & -\nu\left(a_{3}(\mathbf{u}) z^{2}+a_{2}(\mathbf{u}) z^{3}\right) & \cdot \\
\frac{1}{2} a_{1}(\mathbf{u})\left(\partial_{3} p+z^{2}\right) & 0 & -\nu\left(a_{3}(\mathbf{u}) z^{2}+a_{2}(\mathbf{u}) z^{3}\right)
\end{array}\right)
$$

where ν is the Poisson ratio.
The problem (12), (13) is not a classical one, because there is no time derivative of ϕ. The equivalent form of (12) is

$$
\begin{align*}
& a_{0}((\boldsymbol{u}, \phi),(0, \psi))=0, \quad \psi \in H_{0}^{1}(0, \ell) \\
& \frac{d}{d t} b_{0}\left(\partial_{t} \boldsymbol{u}, \boldsymbol{v}\right)+a_{0}((\boldsymbol{u}, \phi),(\boldsymbol{v}, 0))=(\overline{\boldsymbol{f}} \mid \boldsymbol{v})_{H_{0}}, \quad \boldsymbol{v} \in \mathcal{V}_{0} \tag{14}
\end{align*}
$$

It follows that there exists a linear continuous operator $D: \mathcal{V}_{0} \rightarrow H_{0}^{1}(0, \ell)$ such that

$$
\begin{equation*}
\phi=D \boldsymbol{u} . \tag{15}
\end{equation*}
$$

From (14) it follows that \boldsymbol{u} is a solution of the following standard problem

$$
\begin{align*}
& \frac{d}{d t} b_{0}\left(\partial_{t} \boldsymbol{u}, \boldsymbol{v}\right)+d_{0}(\boldsymbol{u}, \boldsymbol{v})=(\overline{\boldsymbol{f}} \mid \boldsymbol{v})_{H_{0}}, \quad \boldsymbol{v} \in \mathcal{V}_{0} \tag{16}\\
& \boldsymbol{u}(0)=\boldsymbol{u}_{0}, \quad \partial_{t} \boldsymbol{u}(0)=\boldsymbol{u}_{1} \tag{17}
\end{align*}
$$

where

$$
d_{0}: \mathcal{V}_{0} \times \mathcal{V}_{0} \rightarrow \mathbb{R}, \quad d_{0}(\boldsymbol{v}, \boldsymbol{w})=a_{0}((\boldsymbol{u}, 0),(\boldsymbol{v}, 0))-a_{0}((0, D \boldsymbol{u}),(0, D \boldsymbol{v}))
$$

Since bilinear forms b_{0} and d_{0} are elliptic, the classical theory of evolution equations implies that the problem (16), (17) has a unique solution \boldsymbol{u} such that

$$
\boldsymbol{u} \in \mathcal{V}_{0}^{c}(0, T)=\left\{\boldsymbol{v} \in C\left([0, T] ; \mathcal{V}_{0}\right) \mid \partial_{t} \boldsymbol{v} \in C\left([0, T] ; \mathcal{H}_{0}\right), \partial_{t t} \boldsymbol{v} \in L^{2}\left(0, T ; \mathcal{V}_{0}^{\prime}\right)\right\}
$$

The function ϕ is uniquely determined by (15) and $\phi \in C\left([0, T] ; H_{0}^{1}(0, \ell)\right)$. It follows that the limit functions \boldsymbol{u} and $\boldsymbol{\gamma}$ are unique, hence whole families $\left(\boldsymbol{u}(\varepsilon), 0<\varepsilon<\varepsilon_{0}\right)$ and $\left((1 / \varepsilon) \boldsymbol{\gamma}^{\varepsilon}(\boldsymbol{u}(\varepsilon)), 0<\varepsilon<\varepsilon_{0}\right)$ are convergent. Thus we proved

Theorem 3. Let the function $\boldsymbol{u}(\varepsilon)$, for $0<\varepsilon<\varepsilon_{0}$, be the solution of (6), (7), and let the assumptions (8), (9) and (11) be fulfilled. Then

$$
\boldsymbol{u}(\varepsilon) \in C([0, T] ; \mathcal{V}(\Omega)), \quad \partial_{t} \boldsymbol{u}(\varepsilon) \in C\left([0, T] ; L^{2}(\Omega)^{3}\right), \quad \partial_{t t} \boldsymbol{u}(\varepsilon) \in L^{2}\left(0, T ; \mathcal{V}(\Omega)^{\prime}\right)
$$

and

$$
\begin{aligned}
& \boldsymbol{u}(\varepsilon) \stackrel{*}{\longrightarrow} \boldsymbol{u} \quad \text { weak } * \text { in } L^{\infty}(0, T ; \mathcal{V}(\Omega)), \\
& \partial_{t} \boldsymbol{u}(\varepsilon) \stackrel{*}{\longrightarrow} \partial_{t} \boldsymbol{u} \quad \text { weak } * \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)^{3}\right), \\
& \partial_{t t} \boldsymbol{u}(\varepsilon) \longrightarrow \partial_{t t} \boldsymbol{u} \quad \text { weakly in } L^{2}\left(0, T ; \mathcal{V}(\Omega)^{\prime}\right), \\
& \frac{1}{\varepsilon} \boldsymbol{\gamma}^{\varepsilon}(\boldsymbol{u}(\varepsilon)) \stackrel{*}{\longrightarrow} \boldsymbol{\gamma} \quad \text { weak } * \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)^{9}\right),
\end{aligned}
$$

when $\varepsilon \rightarrow 0$, where $\mathbf{u}=(\boldsymbol{u}, \phi) \in \mathcal{V}_{0}^{c}(0, T) \times C\left([0, T] ; H_{0}^{1}(0, \ell)\right)$ is a unique solution of (12), (13) and $\boldsymbol{\gamma}$ as given in Theorem 2.

6. Dynamic curved rod model

The system (12), (13) is posed on the canonical domain Ω. The evolution equations of a curved rod in curvilinear coordinates follow from (12), (13), by the change of variables $\boldsymbol{R}^{\varepsilon}: \Omega \rightarrow \Omega^{\varepsilon}$ (see Figure 1). It is easy to show that

$$
I_{23}^{\varepsilon}=\varepsilon^{4} I_{23}, \quad I_{\alpha}^{\varepsilon}=\varepsilon^{4} I_{\alpha}, \quad \alpha=2,3, \quad A^{\varepsilon}=\varepsilon^{2} A
$$

are moments of inertia and area of εS, respectively. Also, the warping function p^{ε} of εS is given by $p^{\varepsilon} \circ \boldsymbol{R}^{\varepsilon}=\varepsilon^{2} p$, so $K^{\varepsilon}=\varepsilon^{4} K$. Thus the matrix

$$
\mathbf{H}^{\varepsilon}=\left(\begin{array}{ccc}
\mu K^{\varepsilon} & 0 & 0 \\
0 & E I_{3}^{\varepsilon} & -E I_{23}^{\varepsilon} \\
0 & -E I_{23}^{\varepsilon} & E I_{2}^{\varepsilon}
\end{array}\right)=\varepsilon^{4} \mathbf{H}
$$

is symmetric and positive definite. The forms $a_{0}^{\varepsilon}: W_{0} \times W_{0} \rightarrow \mathbb{R}$ and $b_{0}^{\varepsilon}: H_{0} \times H_{0} \rightarrow \mathbb{R}$ defined by

$$
a_{0}^{\varepsilon}(\mathbf{v}, \mathbf{w}):=\int_{0}^{\ell} \mathbf{H}^{\varepsilon} \boldsymbol{a}(\mathbf{v}) \cdot \boldsymbol{a}(\mathbf{w}) d z^{1}, \quad b_{0}^{\varepsilon}(\boldsymbol{v}, \boldsymbol{w}):=\left(\varrho^{\varepsilon} A^{\varepsilon} \boldsymbol{v} \mid \boldsymbol{w}\right)_{H_{0}}
$$

correspond to the forms a_{0} and b_{0}. It can be shown by simple calculation that the problem (12), (13) is then equivalent to

$$
\begin{aligned}
& \frac{d}{d t} b_{0}^{\varepsilon}\left(\partial_{t} \boldsymbol{u}, \boldsymbol{v}\right)+a_{0}^{\varepsilon}(\mathbf{u}, \mathbf{v})=\left(\overline{\boldsymbol{F}}^{\varepsilon} \mid \boldsymbol{v}\right)_{H_{0}}, \quad \mathbf{v}=(\boldsymbol{v}, \psi) \in \mathcal{W}_{0}, \\
& \boldsymbol{u}(0)=\boldsymbol{u}_{0}, \quad \partial_{t} \boldsymbol{u}(0)=\boldsymbol{u}_{1},
\end{aligned}
$$

where

$$
\overline{\boldsymbol{F}}^{\varepsilon}=\int_{\varepsilon S} \boldsymbol{F}^{\varepsilon} d y^{2} d y^{3}
$$

References

[1] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5, Evolution Problems I, Springer-Verlag, Berlin, 1992.
[2] R. Jamal and É. Sanchez-Palencia, Théorie asymptotique des tiges courbes anisotropes, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), pp. 1099-1106.
[3] M. Jurak and J. Tambača, Derivation and justification of a curved rod model, Math. Models Methods Appl. Sci., vol. 9, no. 7 (1999), pp. 991-1014.
[4] M. Jurak and J. Tambača, Linear curved rod model. General curve, in preparation.
[5] Xiao Li-ming, Asymptotic analysis of dynamic problems for linearly elastic shells - Justification of equations for dynamic membrane shells, Asymptotic Anal., 17 (1998), pp. 121-134.
[6] A. Raoult, Construction d'un modèle d'évolution de plaques avec terme d'inerte de rotation, Ann. Mat. Pura Appl. (4), 139 (1985), pp. 361-400.
[7] J. TAmbača, One-dimensional models in theory of elasticity, M.Sc. thesis, Department of Mathematics, University of Zagreb, 1999. (In Croatian).
[8] J. TAMBAČA, Evolution model of curved rods, Ph.D. thesis, Department of Mathematics, University of Zagreb, 2000.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia, e-mail: tambaca@math.hr
 ${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia, e-mail: tutek@math.hr

