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†

Abstract. A random evolution equation in the space of random (Colombeau) generalized

Banach space valued functions is solved by a construction of appropriate generalized evolution

family. For generators described via the Wiener white noise the existence of expectation of

evolution family is proved. Moreover, its associated distribution is shown to be a classical

evolution family that solves an equation analogous to the diffusion one.
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1. Introduction

In this paper the following stochastic differential equation is considered:

∂u

∂t
=

d∑

i=1

wi(ω, t)Ai(t)u in X, for t ∈ R. (1)

Here, w =
(
wi(ω, t)

)
d
i=1 is d-dimensional Wiener white noise, and Ai(·) are continuous

families of bounded linear operators defined on a Banach (or B-)space X . The equa-
tion is called stochastic because of the presence of white noise. If, instead of white
noise, we have ordinary stochastic process g(ω, t), the equation would be called ran-

dom. Random equations, that is the equations whose coefficients are random processes
with good enough (let’s say continuous) trajectories, have sense pathwise. Hence, it is
natural to solve such an equation for each ω separately, using corresponding determin-
istic theory. Then, it only remains to prove measurability of solution. For stochastic
equations, because of irregular trajectories, there is no such natural interpretation.
This is where, classically, Itô or some other stochastic integral enters the story.

Our goal is to extend the pathwise approach to stochastic equation (1). However,
we are not only interested in proving the existence, uniqueness and measurability of the
solution. We want also to investigate its mean value, i.e., the mathematical expectation.
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As for the physical motivation, let us note that if the operators Ai(t) are replaced
by ai∂xi

, then (1) becomes the equation of conservation of mass, describing the trans-
port of substance in a random velocity field. The function u represents concentration
of substance and only the mean concentration is of physical interest.

As it is well known, the Wiener white noise may be realized as a probability
measure in the space of distributions, but not as a probability measure in the much
smaller space of ordinary functions. Moreover, almost any trajectory of white noise
is distributional derivative of a continuous function. Thus, pathwise approach leads
us to consider nonlinear operations (multiplication) on distributions. This is done
within the framework of differential algebra of generalized functions discovered by
J. F. Colombeau in the early 1980’s.

After recalling basic facts about algebras of deterministic and random X-valued
generalized functions, the generalized (random) evolution family of operators is defined
as a L(X)-valued generalized function having properties similar to the properties of
classical evolution families. Then it is used to solve an evolution equation in the
Colombeau algebra. The equation (1) is put into the above framework by a suitable
embedding, and existence of expectation of solution (as a deterministic generalized
function) is proved. Finally, its associated distribution is explicitly calculated and it
is shown to be an ordinary evolution family of operators.

Results presented here comprise a part of author’s doctoral dissertation [6].

2. Random Colombeau generalized functions

First we recall some basic facts about Colombeau algebra of (deterministic) gen-
eralized functions with values in B-algebra X . Details may be found in [5]. In the
sequel, all integrals are X–Bochner integrals and all derivatives are X–strong deriva-
tives. When X = R, it is omitted from the notation. For q ∈ N0 := N ∪ {0} we
let

Aq(R) =

{
φ ∈ D(R)

∣∣∣∣
∫
dt φ(t) = 1,

∫
dt tkφ(t) = 0, 1 ≤ k ≤ q

}

and

Aq(Rd) =

{
φ⊗d(t1, . . . , td) =

d∏

j=1

φ(tj)

∣∣∣∣ φ ∈ Aq(R)

}
.

Next, let E(Rd, X) be the set of all functions on A(Rd) with values in C∞(Rd, X). For
u ∈ E(Rd) we write u(φ, t) instead of u(φ)(t). The set E(Rd, X) is a differential alge-
bra. Differentiation is defined by (∂tiu)(φ, t) = ∂tiu(φ, t). The space of distributions
D′(Rd, X) is embedded in E(Rd, X) by the inclusion

w 7→
(
φ 7→ w ∗ φ

)
, w ∈ D′(Rd, X), φ ∈ D(Rd, X), (2)

as a vector space. Differentiation is preserved, but even C∞(Rd, X) is not a subalgebra.
For ε > 0 and φ ∈ A0(Rd) we define φε by

φε(t) = ε−dφ(t/ε) ∈ A0(Rd).
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Now, an element u ∈ E(Rd, X) is called moderate, if for every compact set K ⊂ R
d

and every differential operator D = ∂k1
t1 · · · ∂kd

td
, kj ∈ N0, there is N ∈ N such that:

• for every φ ∈ AN (Rd) there exist C > 0, η > 0, such that
supt∈K ‖Du(φ, t)‖X ≤ Cε−N , for 0 < ε < η.

The algebra of all moderate elements is denoted by EM (Rd, X). An ideal N (Rd, X) of
EM (Rd, X) is defined by: u ∈ N (Rd, X), if for every compact set K ⊂ R

d and every
differential operator D = ∂k1

t1 · · · ∂kd

td
, kj ∈ N0, there is N ∈ N such that:

• for every q ≥ N and every φ ∈ Aq(Rd) there exist C > 0, η > 0, such that
supt∈K ‖Du(φ, t)‖X ≤ Cεq−N , for 0 < ε < η.

Finally, the algebra G(Rd, X) is given by the quotient:

G(Rd, X) = EM (Rd, X)/N (Rd, X).

By applying the embedding (2) to the representatives, we have D′(Rd, X) ⊂ G(Rd, X).
For f ∈ C∞(Rd, X) the constant embedding f 7→ (φ 7→ f) defines the same element
of G(Rd, X) as the embedding (2). Hence, we have C∞(Rd, X) ⊂ G(Rd, X) as a subal-

gebra. This is the key idea of the whole construction, and because of “impossibility”
result of L. Schwartz [8], the best one can achieve.

It is straightforward to define generalized functions on an open subset of Rd, and
then the notion of support. Value at a point, and integral over a compact set are also
easily defined as X-valued generalized constants, the notion that may be introduced
independently of the space dimension. Namely, by dropping the dependence on t in
definitions of EM (R, X) and N (R, X), the algebra CM (X) and ideal I(X) are obtained,
and the algebra of X-valued generalized constants is defined by X = CM (X)/I(X).

The consistency between various operations (e.g., multiplication) in G(Rd, X) with
corresponding operations on ordinary functions is established through the notion of
association. Namely, member u ∈ G(Rd, X) is said to admit an associated distribution

w ∈ D′(Rd, X), if it has a representative Ru such that:

• for every ψ ∈ D′(Rd, X) there is N ∈ N such that for every φ ∈ AN (Rd) it holds:∫
dtRu(φε, t)ψ(t) → w(ψ) as ε→ 0.

Now, the above concepts are shifted into the probabilistic setting, as was sketched
in [7]. Let {Ω,F , P} denote a probability space. A mapping u : Ω → G(Rd, X) is called
random (Colombeau) generalized function if there is Ru : Ω → EM (Rd, X) such that:

(a) Ru(ω) represents u(ω) for a.e. ω,

(b) for every φ ∈ A0(Rd) and t ∈ R
d, Ru(·, φ, t) is X-random element.

The algebra of random generalized functions is denoted by GΩ(Rd, X). In the
same way, the algebra XΩ of random generalized X-valued constants is defined.

Any generalized (X-valued) stochastic process, i.e., a weakly measurable mapping
w : Ω → D′(Rd, X) is identified with a random generalized function, the measurable
representative being obtained by applying (2) for a.e. ω.
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The algebra GΩ(Rd, X) is convenient for (pathwise) calculations. However, it is
not possible to define mathematical expectation in it, since any class contains non-
integrable representatives. Therefore, we consider the vector space G

(
R

d, Lp(Ω, X)
)

of generalized functions with values in B-spaces of p-integrable X-random elements,
p ∈ N, and also the algebra G

(
R

d, L(∞)(Ω, X)
)
, where L(∞)(Ω, X) = ∩p∈NLp(Ω, X) is

a Frechet algebra. The latter case requires a slight modification of definitions (see [6]).

Proposition 1.

(a) For any u ∈ G
(
R

d, L1(Ω, X)
)
, the expectation Eu ∈ G(Rd, X) is well defined by

the representative E(Ru).

(b) For every u ∈ G
(
R

d, Lp(Ω, X)
)
, p ∈ N, it holds up ∈ G

(
R

d, L1(Ω, X)
)
.

Proof. A straightforward calculation based on Hölder inequality, Leibnitz rule, and
the inequality ‖Ef‖X ≤ ‖f‖L1(Ω,X) that is valid for f ∈  L1(Ω, X).

We say that a function R̃ ∈ E
(
R

d, Lp(Ω, X)
)

has E(Rd, X)-modification R ∈
E(Rd, X) if

(a) R(ω) belongs to E(Rd, X) for a.e. ω,

(b) for every t and every φ, the mapping R(·, φ, t) is measurable,

(c) for every t and every φ, it holds that R(·, φ, t) = R̃(φ, t) a.e.

A function ũ ∈ G
(
R

d, Lp(Ω, X)
)

is said to have a version u ∈ GΩ(Rd, X), if there are

representatives R̃u and Ru such that Ru is a modification of Rũ.

Lastly, we recall basic facts about the Wiener white noise. It is a generalized
stochastic process w : Ω → D′(R) uniquely defined by its characteristic functional
Cw : D(R) → R, Cw(φ) := exp{−1/2 ‖φ‖20}, with ‖ · ‖0 := ‖ · ‖L2(R). The derivative in
the sense of distributions of w is (the version of) an ordinary Brownian motion (which
we denote by b), with a.s. continuous paths. (For details see [1, Theorem 2.4.1. and
Examples 1., 3. on pages 36–37]). Via the embedding (2) applied for a.e. ω with X = R,
both processes w and b are members of GΩ(R). Furthermore, for every φ ∈ D(R),
random variables b(φ) and w(φ) belong to L(∞)(Ω), since they are Gaussian. Let
γ(ω) := maxt∈K |b(ω, t)| for a compact set K ⊂ R. Lemma 1 from Section 4 shows
that the random variable γ(ω) has moments of all orders, from which easily follows
that b ∈ C

(
R, L(∞)(Ω)

)
. Thus, b and w = b′ belong to D′

(
R, L(∞)(Ω)

)
. By using the

embedding (2) with X = L(∞)(Ω), we obtain generalized functions b̃ and w̃ for which
b and w are versions with paths in G(R).

3. Random generalized evolution family

Let X be a separable B-space and L(X) the B-algebra of bounded linear operators
on X . We are going to solve a random evolution equation in G(R, X). This will be
done by construction of random generalized family of evolution operators.
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Definition 1. Random generalized evolution family is a function U ∈ GΩ

(
R

2, L(X)
)

such that for a.e. ω ∈ Ω it holds:

(a) U(ω, t, r)U(ω, r, s) = U(ω, t, s) in G
(
R

3, L(X)
)
, for t ≤ r ≤ s,

(b) U(ω, t, t) = I ∈ L(X) ⊂ L(X).

Note that the usual condition of strong continuity with respect to t, s, is replaced
by a mild request that U is a generalized function. With regard to the moderation
property of U , we need the following definition [4].

Definition 2. Let A ∈ G
(
R, L(X)

)
. Then A is called locally of logarithmic growth,

if there is a representative RA ∈ EM
(
R, L(X)

)
with property:

• For every compact K ⊂ R there is N ∈ N such that for every φ ∈ AN (R) there

exist C > 0, η > 0, with supt∈K ‖RA(φ, t)‖X ≤ N log(C/ε).

Theorem 1. Let A ∈ GΩ

(
R, L(X)

)
be of locally logarithmic growth. Then there exists

evolution family U ∈ GΩ

(
R

2, L(X)
)
with properties:

(∂/∂t)U(ω, t, s) = A(ω, t)U(ω, t, s), (∂/∂s)U(ω, t, s) = −U(ω, t, s)A(ω, s), (3)

in G
(
R

2, L(X)
)
for a.e. ω ∈ Ω.

Proof. Let RA(ω, φ, t) ∈ EM
(
R, L(X)

)
be a measurable representative of A, and let

it be a.s. locally of logarithmic growth. Then, the function RU is defined as follows:

RU (ω, φ⊗ φ, t, s) = I

+

∞∑

k=1

∫ t

s

dt1

∫ t1

s

dt2 · · ·

∫ tk−1

s

dtk RA(ω, φ, t1)RA(ω, φ, t2) · · ·RA(ω, φ, tk). (4)

By using the classical Picard’s iteration method for a.e. (fixed) ω and φ, the following
properties of RU are obtained:

(i) RU (ω, φ⊗ φ, t, t) = I, RU (ω, φ⊗ φ, t, r)RU (ω, φ⊗ φ, r, s) = RU (ω, φ⊗ φ, t, s),

(ii) ‖RU (ω, φ⊗ φ, t, s)‖L(X) ≤ exp
{
|t− s|maxr∈[s,t] ‖RA(ω, φ, r)‖L(X)

}
,

(iii) (t, s) 7→ RU (ω, φ⊗ φ, t, s) is continuously differentiable,

(iv) (∂/∂t)RU (ω, φ⊗ φ, t, s) = RA(ω, φ, t)RU (ω, φ⊗ φ, t, s),

(v) (∂/∂s)RU(ω, φ⊗ φ, t, s) = −RU (ω, φ⊗ φ, t, s)RA(ω, φ, s).

Hence, if we show the moderation property for a.e. ω and measurability for fixed
φ, t and s, then (i) implies (a) and (b) from Definition 1, while (iv) and (v) imply (3).

Since RA(ω, φ, ·) ∈ C∞
(
R, L(X)

)
, the Leibnitz rule gives the same for RU (ω, φ⊗

φ, ·, ·). Now, for a compact set K ⊂ R
2, let CK := max(t,s)∈K |t− s|. From (ii) there

is a compact set K1 ⊂ R such that

sup
(t,s)∈K

‖RU (φ⊗ φ, t, s)‖L(X) ≤ exp
{
CK sup

r∈K1

‖RA(φ, r)‖L(X)

}
.
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If we apply Definition 2 to K1 and A, it follows

sup
(t,s)∈K

‖RU (φε ⊗ φε, t, s)‖L(X) ≤ exp
[
CKN ln(C/ε)

]
= CCKN · ε−CKN ,

which is the desired estimate for the function itself. The estimates for derivatives are
obtained by induction using (iv) and (v).

Measurability is proved in the same way as in [3, theorem 1.6].

Corollary 1. Let f ∈ GΩ(R, X) and u0 ∈ XΩ. The unique solution of initial value

problem
du

dt
= A(ω, t)u+ f(ω, t), u(ω, 0) = u0(ω)

in GΩ(R, X) is given by

u(ω, t) = U(ω, t, 0)u0(ω) +

∫ t

0

dr U(ω, t, r)f(ω, r).

Proof. On the level of representatives, the unique solution reads

Ru(ω, φ, t) = RU (ω, φ⊗ φ, t, 0)Ru0(ω, φ) +

∫ t

0

dr RU (ω, φ⊗ φ, t, r)Rf (ω, φ, r),

which gives the existence. If Ru0 ∈ I(X) and Rf ∈ N (R, X), then Ru ∈ N (R, X)
also, since by Theorem 1 RU is moderated. This proves uniqueness.

4. Expectation and its associated distribution

Now, the obtained results are applied to the family of generators

A(ω, t) =

d∑

i=1

wi(ω, t)Ai(t), (5)

where w = (wi)
d
i=1 is a d-dimensional Wiener white noise, and Ai(·) ∈ C

(
R, L(X)

)
.

As (5) is meaningless in the classical sense, since it involves multiplication of distri-
butions and continuous functions, it is interpreted in GΩ

(
R, L(X)

)
as a product of

corresponding embeddings. However, since the embedding (2) applied to wi does not
result in a generalized function locally of logarithmic growth, it is replaced by another
generalized function associated with wi, that enjoys this property. So, the family (5)
is replaced by a generalized function (still denoted by A) with representative

RA(ω, φ, t) :=
d∑

i=1

(
wi(ω) ∗ θ(φ)

)
(t) · (Ai ∗ φ)(t), (6)

where θ : D(R) → D(R) is defined by φ 7→ θ(φ) = ψν(l(φ)). Here ψ ∈ D(R) is a fixed
function, l(φ) = sup{|t| | φ(t) 6= 0} (obviously l(φε) = εl(φ)), and ν : (0,∞) → R is
the function ν(t) := (ln 1/t)−1/2 (see [4, Proposition 1.5.]).
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The following lemma is the main ingredient in the proof of existence of expectation
for the evolution family generated by (5).

Lemma 1. Let g : Ω×R → R
d be a vector-valued Gaussian process with a.s. contin-

uous paths and let

g̃(ω) := max
1≤i≤d

max
r∈[s,t]

|g(ω, r)|

for fixed s < t. Then there are constants η, C > 0 such that:

(a) E(eag̃) ≤ ea
2d2/η + C, for every a > 0,

(b) E(g̃jeag̃) ≤ e(j+1)2a2d2/η + C, for every a > 1, and j ∈ N.

Proof. For fixed i let g̃i(ω) := maxr∈[s,t] |gi(ω, r)| < ∞ a.s. (because of continuity of
paths). According to [2] there is a constant η such that random variable exp(ηg̃2i ) is

integrable. Putting C := max1≤i≤d E(eηg̃
2
i ), we have:

E(eag̃i) =

∫

|g̃i|<a/η

dP (ω) eag̃i(ω) +

∫

|g̃i|>a/η

dP (ω) eag̃i(ω) ≤ ea
2/η + C.

Hence, for a > 0 we have

E(eag̃) ≤
1

d

d∑

i=1

E(eadg̃i) ≤ ea
2d2/η + C,

which proves (a). Similarly, for a > 1,

E(g̃jeag̃) ≤ E(e(a+j)g̃) ≤ e(a+j)2d2/η + C ≤ e(j+1)2a2d2/η + C,

which gives (b).

Proposition 2. Let U ∈ GΩ

(
R

2, L(X)
)
be a random generalized evolution family

generated by A ∈ GΩ

(
R, L(X)

)
with representative (6). Then, there is a generalized

family Ũ ∈ G
(
R

2, L(∞)(Ω, L(X))
)
such that U is a version of Ũ .

Proof. The representative RU of U is given by (4) with RA taken from (6). It is
enough to show that RU ∈ G

(
R

2, L(∞)(Ω, L(X))
)
. Take l(φ) = 1 (without loss of

generality) and put ε1 = ν
(
εl(φ)

)
= ν(ε). In the rest of the proof, C1, C2, . . . , are

constants that do not depend on ε. After a short calculation we obtain

‖RA(ω, φε, r)‖L(X) ≤
d∑

i=1

max
s1∈[r−ε1,r+ε1]

|bi(ω, s1)| · max
s2∈[r−ε,r+ε]

‖Ai(s2)‖L(X) ·
C1

ν(ε)
.

Now, for any p ∈ N and compact set K ⊂ R
2, there is a compact set K1 ⊂ R

and C2 = max1≤i≤d maxs2∈K1 ‖A(s2)‖L(X), so that, utilizing (ii) from the proof of
Theorem 1, we have

‖RU (·, φ⊗ φ, t, s)‖pLp(Ω,L(X)) ≤

∫
dP (ω)

{
exp

[
C2|t− s|

ν(ε)

∑

i

max
r∈K1

|bi(ω, r)|

]}p

.
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According to Lemma 1 (a), the integral on the right-hand side is bounded by
C3 exp{−C4 p |t − s|2}. After taking supremum over K, the moderation estimate for
the function RU itself follows. Estimates of derivatives are obtained by induction,
using Lemma 1 (b).

Theorem 2. Let Ũ ∈ G
(
R

2, L(∞)(Ω, L(X))
)
be a random generalized evolution family

from Proposition 2. Let B(t) =
∑d

i=1 A
2
i (t). Then the expectation EŨ ∈ G

(
R

2, L(X)
)

admits an associated distribution V ∈ C
(
R

2, L(X)
)
given by

V (t, s) = I +

∞∑

k=1

1

2k

∫ t

s

dt1B(t1)

∫ t1

s

dt2B(t2) · · ·

∫ tk−1

s

dtk B(tk) (7)

for s ≤ t, and V (t, s) = V (s, t) for t < s.

Sketch of the proof. We have to show that ERU (ω, φε ⊗ φε, t, s) → V (t, s) in
D′

(
R

2, L(X)
)

as ε → 0, where RU is given by (4). As this is done by an elemen-
tary, but long calculation, we shall not give all the details.

It is easily seen that proof does not depend on the property of logarithmic growth.
For this reason, as well as for simplicity of notation, we work with φε 7→ wi,ε = wi ∗φε.
The process {wi,ε}di=1 is Gaussian with covariance E

(
wi,ε(t1)wj,ε(t2)

)
= δijqε(t1, t2),

where qε(t1, t2) =
∫
dr φε(t1 − r)φε(t2 − r) and δij is the Kronecker symbol. Note

that qε(t1, t2) → δ(t1 − t2) in D′(R2). Furthermore, since Ai,ε = Ai ∗ φε is bounded
uniformly with respect to ε, there is no essential difference if we work with Ai instead
of Ai,ε.

Let us denote the expectation of the 2k-th term in the series (4) by Ik(t, s) (sup-
pressing φε in notation). Thus,

Ik(t, s) =

d∑

i1,...,i2k=1

∫ t

s

dt1 · · ·

∫ t2k−1

s

dt2k µi1,...,i2k(t1, . . . , t2k) · Ai1(t1) · · ·Ai2k(t2k),

where µi1,...,i2k(t1, . . . , t2k) = E
(
wi1,ε(t1) · · ·wi2k ,ε(t2k)

)
(the moments of odd order

are zero). Now, we denote A
(0)
i (t) = Ai(t) and

A
(j)
i (t) :=

Ai(t)

2j

∫ t

s

dsk+1−jB(sk+1−j)·

∫ sk+1−j

s

dsk+2−jB(sk+2−j) · · ·

∫ sk−1

s

dskB(sk),

for j = 1, . . . , k − 1. Then let Qε(t1, t2, s) :=
∫ t2
s
dr qε(t1, r), and

J
(j)
1 =

d∑

i=1

∫ s+2ε

s

dt

(
Qε(t, t, s) −

1

2

)
Ai(t)A

(j)
i (t),

J
(j)
2 =

d∑

i=1

∫ s+2ε

s

dt1 Ai(t1)

∫ t1

s

dt2 qε(t1, t2)
(
A

(j)
i (t2) −A

(j)
i (t1)

)
,

J
(j)
3 (t) =

d∑

i=1

∫ t

s+2ε

dt1Ai(t)

∫ t1

t1−2ε

dt2 qε(t1, t2)
(
A

(j)
i (t2) − A

(j)
i (t1)

)
,
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for j = 0, 1, . . . , k − 1. Let I
(0)
k (t, s) = Ik(t, s) and

I
(j)
k (t, s) :=

d∑

i1,...,i2(k−j)=1

∫ t

s

dt1 · · ·

∫ t2(k−j)−1

s

dt2(k−j) µi1,...,i2(k−j)
(t1, . . . , t2(k−j))

·Ai1(t1) · · ·Ai2(k−j)−1
(t2(k−j)−1)A

(j)
i2(k−j)

(t2(k−j)),

for j = 1, . . . , k − 1, and let I
(k)
k be the k-th term in (7). Then, for k ≥ 1, we have

‖I
(0)
k (t, s) − I

(k)
k (t, s)‖L(X) ≤

k−1∑

j=0

‖I
(j)
k (t, s) − I

(j+1)
k (t, s)‖L(X)

≤
k−1∑

j=0

‖Ik−j−1(t, s)‖L(X)

[
‖J

(j)
1 ‖L(X) + ‖J

(j)
2 ‖L(X)

+ max
r∈(s,t)

‖J
(j)
3 (r)‖L(X)

]
+ ‖O

(j)
k ‖L(X),

where the second inequality is obtained by applying the recursive formula for the
moments of Gaussian process

µi1,...,i2k(t1, . . . , t2k) = µi1,...,i2k−2
(t1, . . . , t2k−2)µi2k−1,i2k(t2k−1, t2k)

+

2k−2∑

l=1

µi1,...,il−1,il+1,...,i2k−1
(t1, . . . , tl−1, tl+1, . . . , t2k−1)µil,i2k(tl, t2k), (8)

with k − j instead of k. The term O
(j)
k arises from the sum (8). Now, denoting

C =

∫
dr |φ(r)|,

D = max
1≤i≤d

max
r∈(s,t)

‖Ai(r)‖L(X),

η(ε) = max
1≤i≤d

max
t1,t2∈(s,t)
|t1−t2|≤2ε

‖Ai(t1) −Ai(t2)‖L(X),

the following estimates are valid:

max
r∈(s,t)

‖A
(j)
i (r)‖L(X) ≤ D

(t− s)j

2j j!
(dD2)j ,

‖J
(j)
1 ‖L(X) ≤ 2(dD2)j+1

(
C2 +

1

2

)
εj+1

j!
,

‖J
(j)
2 ‖L(X) ≤ 4(dD2)j+1C2 ε

j+1

j!
,

max
r∈(s,t)

‖J
(j)
3 (r)‖L(X) ≤ dDC2 (dD2)j (t− s)j

2j(j − 1)!

(
t− s

j
η(ε) + δj0 2Dε

)
,

‖O
(j)
k (t, s)‖L(X) ≤ D2(n−j) (t− s)j

2j j!
(dD2)j · C(k).
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Constants C(k) for k ≥ 4 are bounded by const ·(t−s+1)k−4 C2(k−4)/(k−4)! . Hence,
by using the above estimates and the binomial theorem, the constants C1, C2 (that
do not depend on ε!) are found such that for k ≥ 2 we have

‖I
(0)
k (t, s) − I

(k)
k (t, s)‖L(X) ≤ C1

Ck−2
2

(k − 2)!

(
ε + η(ε)

)
,

and similarly for k = 1. Finally, by summing over k, we arrive at

‖E
(
RU (ω, φε ⊗ φε, t, s

)
− V (t, s)

)
‖L(X) ≤ C3

(
ε+ η(ε)

)
,

for some constant C3. For t < s the proof is analogous.

When the operators Ai(t) commute with each other the proof is much easier, i.e.,
it is a straightforward generalization of the calculation of characteristic function for
Gaussian process.

From (7) we see that V (t, s) satisfies the equation (∂/∂t)V = (1/2)B(t)V . If
Ai are (formally) replaced by ∂/∂xi, the classical diffusion equation is obtained, ex-
plaining partially the heuristically well-known relationship between white noise and
classical diffusion. (See [6].)
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