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Upscaling of Two–Phase Flow

Mladen Jurak
∗

Abstract. We consider the upscaling of two-phase flow in the case of high Peclet number.

We treat periodic media with one rock-type by the method of asymptotic expansion and we

propose a new upscaling method that is easy to generalize to nonperiodic media.
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1. Introduction

When building petroleum reservoir model one usually faces the problem of small
scale heterogeneities that influence large scale behaviour of the reservoir. More pre-
cisely, the characteristics of the reservoir like porosity, permeability, relative perme-
abilities, capillary pressure, etc., are variable at very small length scale compared to
the field scale. These variations are known at best in the terms of the probability
model. On the other hand, these microscopic variations influence macroscopic (field
scale) flow behaviour. Since the flow simulation is usually not feasible at the micro-
scopic scale, we have to upscale these oscillating quantities to the field scale or to
some intermediate scale determined by feasibility of numerical flow simulation. In
other words, we have to calculate effective reservoir properties .

Small scale heterogeneities will influence large scale flow behaviour differently in
different flow regimes. Quantity that characterizes the flow regime is the ratio of
capillary and viscous forces at the microscopic level, or in mathematical terms, the
ratio of diffusion and convection in governing equations; that quantity can be measured
by Peclet number. For low Peclet number flows (strong capillary forces, slow flow) the
upscaling problem is well studied (see [5, 4, 2, 7]). The situation is different for high
Peclet number flows, the problem that we address in this article.

We will make a number of simplifications to describe the upscaling problem. First,
we will assume that there are only two well separated scales: microscopic or local

one, determined by the length of the small scale heterogeneities, and macroscopic or
global scale, given by dimensions of the whole reservoir. In real situations, the media
would be variable at all length scales. Secondly, we assume that the structure of the
medium is periodic. Although unrealistic, this assumption permits us to make effective
calculations and obtain the results that we can try to generalize to a more realistic
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model of random medium (see [9]). To make such a generalization possible, we should
never neglect capillary forces (diffusion), no matter how small they may be. On the
other hand, we know that the periodic media can be regarded as a special case of
more general random media that is statistically homogeneous and ergodic (see [9]).
Therefore, we do not consider the periodicity hypothesis as a purely academic case.
Our third assumption is that the functions of the saturation — relative permeabilities
and capillary pressure — do not oscillate at the microscale. That is, we consider
porous medium with just one rock type, and the upscaling problem is then reduced
to the upscaling of the absolute permeability1. Naturally, we are more interested
in porous media with multiple rock types, since there the influence of high Peclet
number on the upscaling procedure is much stronger than in the one rock-type case.
But, for simplicity, we treat here only the one rock-type problem. Our method could
be equally applied to the multiple rock-type upscaling problem and we will treat it in
a subsequent paper.

The plan of the paper is the following one. In the second section we write two-
phase flow equations in periodic setting. In the third section we introduce the Peclet
number and we scale the flow equations. Then, in the fourth section we describe
the well-known upscaling procedure for slow flows (low Peclet number), and in the
fifth section we give a new upscaling procedure, corresponding to the fast flow (high
Peclet number). Finally, in the sixth section we specialize this new method to the one-
dimensional flow problem. There we can make explicit calculations of the upscaled
absolute permeability.

2. Two-phase flow model

Let Ω ⊂ R
3 be a bounded set with regular boundary that represents heterogeneous

porous medium. The porous medium is characterized by its porosity φ and absolute
permeability K. The porosity function φ satisfies 0 < φ(x) < 1 in Ω, while the
permeability tensorK is symmetric, uniformly bounded and uniformly positive definite
in Ω.

In our formal approach we will assume that the porous medium is periodic. That
means that there exist a cell Y = (0, L1)× (0, L2)× (0, L3), a small positive parameter
ε, and Y –periodic functions φ and K, such that the porosity φε and the absolute
permeability Kε take the form

φε(x) = φ
(x

ε

)

, Kε(x) = K
(x

ε

)

, x ∈ Ω.

The parameter ε is proportional to the characteristic length of the heterogeneities in
the reservoir. For small values of ε the rock properties of the porous medium are highly
oscillating. We explicitly denote the dependence of the porosity and permeability on
ε, since we are interested in the effective behaviour of the porous medium for small
values of ε.

1Upscaling of the porosity is always straightforward, since the pore volume is an additive quantity.
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We consider two-phase flow through periodic porous medium Ω. Fluids are sup-
posed to be incompressible and immiscible, with constant viscosities µw, µn, and
constant mass densities ρw, ρn (indices w and n stand for wetting and non-wetting

phase, respectively). Through the capillarity law we can eliminate the pressure of the
wetting phase and write down the flow equations in the terms of wetting phase satu-
ration Sε and non-wetting phase pressure pε as follows (see, e.g., [8]). For simplicity,
we will neglect the effects of gravity.



















φε
∂Sε

∂t
+ div

(

b(Sε)~q ε
t

)

= div
(

Kεa(Sε)∇Sε
)

~q ε
t = −d(Sε)Kε

(

∇pε + a1(S
ε)∇Sε

)

div(~q ε
t ) = 0.

(1)

Here ~q ε
t denotes total velocity, and the functions of saturation are defined as follows:

λw(S) =
krw(S)

µw
, λn(S) =

krn(S)

µn
, d(S) = λw(S) + λn(S),

b(S) =
λw(S)

d(S)
, a(S) = −

λw(S)λn(S)

d(S)

dpc
dS

(S), a1(S) = −
λw(S)

d(S)

dpc
dS

(S),

where krw(S) and krn(S) are relative permeabilities of wetting and non-wetting phase,
respectively, and pc(S) is the capillary pressure. For a general discussion on the
physical principles behind this model we refer, e.g., to Marle [10].

Equations (1) should be completed by certain boundary and initial conditions
for the pressure and the saturation. It can be proved (see [8] or [1]) that the initial
boundary value problem for (1), when properly posed, has at least one solution. Since
for further development, the boundary conditions are not essential, we will not write
them down. We refer to [8] for a discussion on boundary conditions.

In the case considered here, relative permeability functions and capillary pressure
are not oscillating quantities. In other words, we consider the case of one rock-type.
Upscaling of two-phase flow with multiple rock-types is a more difficult problem. For
voluminous engineering literature on that problem we refer to Barker and Thibeau [3]
and references therein. From mathematical work we mention the work of Bourgeat
and Hidani [6] that rigorously justifies formal development in Saez et al. [15]. See also
Quintard and Whitaker [13], where somewhat different approach is taken.

3. Flow regime

As mentioned in the introduction, the effective behaviour of the porous medium
is dependent on the flow regime. In order to quantify different flow regimes we write
the system (1) in dimensionless form. We introduce different dimensionless quantities
denoted by a prime:

x = lx′, ~q ε
t = q0~q ′ε

t , Kε = k0K′

ε, µn = µ0µ′

n,

µw = µ0µ′

w, φε = φ0φ′ε, pc(S) = Pc0p′c(S), p = P 0p′,
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where characteristic values are denoted by the superscript 0. The parameter l is the
characteristic length of the heterogeneities in the porous medium, and equals εL, where
L is the characteristic length of the whole reservoir. Let us note that taking a different
value for P 0 is equivalent to a rescaling of dimensionless pressure p′ and, therefore,
one can usually take P 0 = Pc0, but it is not necessary.

In dimensionless equations (but still with physical time), we can see that there
exist two characteristic times. They are

τd =
l2µ0φ0

k0Pc0
, τc =

lφ0

q0
,

local diffusion time τd and local convection time τc. If we replace l by L in the
above definitions, we get global diffusion time Td and global convection time Tc. Since
l/L = ε, we have τd = ε2Td and τc = εTc.

From these two times we can build one dimensionless parameter, that is local
Peclet number

Pel =
τd
τc

=
q0lµ0

k0Pc0
.

By using global times instead of local ones, we obtain global Peclet number PeG.
Obviously, we have

PeG =
1

ε
Pel.

Let us note here that the Peclet number can be regarded as ratio of viscous and
capillary forces or convective and diffusive terms in the convection–diffusion equation
for the saturation. Large Peclet number corresponds to convection dominated flow.

In order to write the system (1) in dimensionless form we have to choose dimen-
sionless time. The choice depends on Peclet number. If global Peclet number is of
order one (PeG = O(1)), then global diffusion and convection times (Td and Tc) are
of the same order in ε and we have just one global time scale. After making the time
dimensionless, we get the following equations (we do not write primes for simplicity):



























φε
∂Sε

∂t
+ PeG div

(

b(Sε)~q ε
t

)

= div
(

Kεa(S
ε)∇Sε

)

~q ε
t = −

1

PeG
d(Sε)Kε

(

∇pε + a1(S
ε)∇Sε

)

div(~q ε
t ) = 0,

(2)

where we took P 0 = Pc0. We see that the equations (2) have the same form as the
equations (1) written in physical variables. So if we apply the method of asymptotic
expansion (see Section 4) to the system (2) (or (1)), we introduce the assumption
PeG = O(1). Corresponding effective equations can give a good approximation to the
microscale equations only under that flow regime.
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Let us now consider the case PeG = O(1/ε). In that case the viscous forces
dominate over capillary forces at the global level. Then there are two different global
characteristic times and thus two possible global time scales: global time scale of
diffusion and of convection. Since we are mainly interested in convective effects, we
write dimensionless equations in global time scale of convection (without primes for
simplicity) as:



























φε
∂Sε

∂t
+ Pel div

(

b(Sε)~q ε
t

)

= ε div
(

Kεa(S
ε)∇Sε

)

~q ε
t = −

1

Pel
d(Sε)Kε

(

∇pε + ε a1(S
ε)∇Sε

)

div(~q ε
t ) = 0,

(3)

where we took P 0 = Pc0/ε. This is proper scaling of the system (1) in the case
PeG = O(1/ε). The effective equations that correspond to nonhomogeneous media in
this flow regime can be obtained by asymptotic expansion method starting from the
system (3).

4. Slow flow upscaling method

Let us now apply the technique of asymptotic expansion to the system (2) (or,
equivalently, (1)). The details of the technique can be found in [9]. We assume that
the solution of the system (2) can be, at least formally, expanded in Taylor series with
respect to the small parameter ε.

Sε(x, t) = S0(x, t) + εS1(x, y, t) + ε2S2(x, y, t) + · · · , y =
x

ε
, (4)

pε(x, t) = p0(x, t) + εp1(x, y, t) + ε2p2(x, y, t) + · · · , y =
x

ε
, (5)

where the functions Sk(x, y, t) and pk(x, y, t) are defined on Ω × R
3 × [0, T ] and are

Y –periodic with respect to the variable y. Then we substitute the above expansions
into the system (2) and identify successive problems that couples (Sk, pk) have to
satisfy. Zero-order term (S0, p0) does not contain oscillations and the equations that
it satisfies are effective (or upscaled) equations of the two-phase flow through periodic
nonhomogeneous media. By standard calculation we find:



















〈φ〉
∂S0

∂t
+ div

(

b(S0)~q 0
t

)

= div
(

Kha(S0)∇S0
)

~q 0
t = −d(S0)Kh

(

∇p0 + a1(S
0)∇S0

)

div(~q 0
t ) = 0,

(6)

where generally we set

〈f〉 =
1

|Y |

∫

Y

f(y) dy,
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and where effective absolute permeability tensor is given by:

Kh~ξ = 〈K(∇χ+ ~ξ )〉, ~ξ ∈ R
3. (7)

Here, for a given ~ξ ∈ R
3, χ ∈ H1(Y ) is a solution of the following local problem:

{

div
(

K(∇χ+ ~ξ )
)

= 0 in R
3,

χ is Y –periodic and 〈χ〉 = 0.

We see that the governing laws in effective homogeneous medium are the same as
in nonhomogeneous medium. Only new effective coefficients (porosity and permeabil-
ity) have to be calculated. That is a consequence of strong capillary force at the local
level, which actually enables us to apply monophase upscaling method (see, e.g., [9])
to multiphase flow. That makes this upscaling method simple and efficient, but the
results will deteriorate for large Peclet number flows.

The solution (S0, p0) of the system (6) can be obtained as a weak limit of the
solution (Sε, pε) of the system (1), as ε tends to zero. That provides a justification of
the effective equations. In the periodic setting, the effective equations are justified in
A. Bourgeat [5, 4]; in a more general stochastic setting that describes random media,
justification is done in Bourgeat et al. [7].

5. Fast flow upscaling method

In this section we make an asymptotic expansion of the form (4), (5) in the
system (3). Since the diffusive term is of order ε, the problem for (S0, p0) does not
contain the diffusion term. In order to retain capillary forces in our effective flow
model, it is necessary to take into consideration the term (S1, p1). In other words, we
cannot find effective flow equations by passing to a weak limit as ε tends to zero in
the system (3). We have to build certain “first-order approximation”.

Our approach is based on formal asymptotic expansion. We observe that the
function

S∗(x, t) = S0(x, t) + ε
〈φS1(x, ·, t)〉

〈φ〉

satisfies approximately2, after neglecting certain terms of second order in ε, one equa-
tion of convection–diffusion type with the diffusion of order ε. In that way we obtain
the correct diffusion term in our effective equations. Similar approach is taken in linear
case in Panfilov [12] (see also [11]). In the pressure equation we work with two differ-
ent pressures: p0(x, t) and p1(x, t) = 〈p1(x, ·, t)〉, since the problem for the first-order
approximation to the pressure, p0 + εp1, is not well posed.

2Here we use mean value weighted by porosity for technical reasons.
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With the procedure described above, we arrive at the following effective equations:


































〈φ〉
∂S∗

∂t
+ div

(

b(S∗)
[

~q
(0)
t + ε~q

(1)
t

])

= ε div
(

Dh(S∗,∇p0)∇S∗)

div ~q
(0)
t = 0, div ~q

(1)
t = 0

~q
(1)
t = −d(S∗)Kh∇p1 − d(S∗)Nh · ∇2p0 −Mh(S∗,∇xp

0)∇S∗

~q
(0)
t = −d(S∗)Kh∇p0.

(8)

Effective pressure is p∗ = p0 + εp1 and effective total velocity is ~q
(∗)
t = ~q

(0)
t + ε~q

(1)
t .

They are calculated in two steps by solving two elliptic equations, as it is usual
when constructing asymptotic expansion for an elliptic equation. In order to form
the effective equations it is necessary to calculate the following effective quantities:
effective absolute permeability Kh, “second-order effective permeability” Nh, tensor
Mh(S∗,∇xp

0) that is “effective value” of a1(S)K
ε in the pressure equation, and tensor

Dh(S∗,∇p0) that is “effective value” of a(S)Kε in the saturation equation. We note
that the last two effective tensors depend on S∗ and ∇p0, while oscillating quantities
depend only on Sε. That is a well-known effect of dispersion at the macroscopic scale
where diffusion depends on (macroscopic) velocity, here through ∇p0.

In order to calculate all these effective quantities we have to solve four different
local problems . Two of them (for Kh, Nh) are classical ones from the elliptic homog-
enization theory (see, e.g., [9]), and the other two contain coupling between global
and local scales. They have to be solved for each value of the saturation S∗ and each
pressure gradient ∇p0. The local problems are:

First local problem. For k = 1, 2, 3:














divy
(

~F 0
k

)

= 0 in R
3,

~F 0
k (y) = −K(y)(∇yχk + ~ek),

χk is Y –periodic and 〈χk〉 = 0.

Then we define

~Q
(0)
t (x, y, t) =

3
∑

k=1

~F 0
k (y)

∂p0

∂xk
(x, t),

and we have

~q
(0)
t = d(S∗)

3
∑

k=1

〈~F 0
k 〉

∂p0

∂xk
= −d(S∗)Kh∇xp

0,

where Kh is the same tensor as in (7).

Second local problem. For k, l = 1, 2, 3:
{

divy
(

K(∇yχk,l + ~elχk)
)

=
(

~F 0
k − 〈~F 0

k 〉
)

· ~el,

χk,l is Y –periodic and 〈χk,l〉 = 0.
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Third local problem. For k = 1, 2, 3 (and c(S) = a(S)/(d(S) b′(S)) > 0):











−c(S∗) divy
(

K(∇yψk + ~ek)
)

+ divy
(

ψk
~Q
(0)
t

)

=

(

φ

〈φ〉

〈

~Q
(0)
t

〉

− ~Q
(0)
t

)

· ~ek,

ψk is Y –periodic and 〈φψk〉 = 0.

Fourth local problem. For k = 1, 2, 3:











− divy
(

K∇ywk

)

− a1(S
∗) divy

(

K(∇yψk + ~ek)
)

+
d′(S∗)

d(S∗)
divy

(

ψk
~Q
(0)
t

)

= 0,

wk is Y –periodic and 〈wk〉 = 0.

Effective tensors are given by:

Nh = (Nh
k,l), Nh

l,k =
〈

K(∇yχk,l + ~elχk)
〉

,

Mh(S∗,∇xp
0)~el = d(S∗)

〈

K[∇ywl + a1(S
∗)(∇yψl + ~el)]

〉

− d′(S∗)
〈

ψl
~Q
(0)
t

〉

,

Dh(S∗,∇xp
0)~el = a(S∗)

〈

K(∇yψl + ~el)
〉

− b′(S∗)d(S∗)
〈

ψl
~Q
(0)
t

〉

.

The tensors Mh and Dh differ significantly, since a part of Dh comes from convective
term in the saturation equation, while there does not exist such an effect in the pressure
equation. Furthermore, one can show that Dh is of the form a(S∗)Dh

1 (S
∗,∇p0), where

Dh
1 is a positive definite tensor, although nonsymmetric. That will ensure that the

initial boundary value problem for (8) is well posed. We should note also that all local
problems are obviously well posed.

To conclude, we have found very complicated system of effective equations that
is not easy either to analyse theoretically or to verify numerically. The main charac-
teristic of the system is a coupling between local and global variables through local
problems that depend on global variables. On the other hand, this coupling cannot
be avoided in the case of the fast flow. In engineering literature there is a number
of upscaling methods (for multiple rock-type porous media), the so-called dynamic

methods , that realize this coupling through certain “restricted” microscale simulation
— in other words, numerically (see [3] for details). The advantage of our approach
is that the coupling is given in an explicit way. We presume that the method could
be extended to the stochastic setting by appropriate change of boundary conditions
(see [7] and [2]).

6. One-dimensional case

In one space dimension we can simplify the obtained effective equations, since the
pressure and the saturation equation are completely separated by constantness of the
total velocity. We will consider only the saturation equation.
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Let us suppose that Ω = (0, 1), and that constant positive total velocity q0 is
prescribed at x = 0. Then the total velocity is equal to q0 in the whole domain
and, consequently, there are no oscillations in the convective term of the saturation
equation. In other words, we have

q
(0)
t = q0 and q

(1)
t = 0.

By direct calculation we can see that the effective saturation equation has the following
form:

〈φ〉
∂S∗

∂t
+ q0

d

dx
b(S∗) = ε

d

dx

(

a(S∗)khom(S∗)
dS∗

dx

)

,

where the only effective quantity is effective absolute permeability khom , given by

khom(S∗) = k∗(β), where β =
b′(S∗)

a(S∗)
q0,

and

k∗(β) =
β

1− e−β/kh

〈φeβr〉〈φe−βr〉

〈φ〉2
−

β

〈φ〉2

∫ 1

0

φ(y)eβr(y)
∫ y

0

φ(t)e−βr(t) dt dy,

r(y) =

∫ y

0

dt

k(t)
and kh =

(
∫ 1

0

dt

k(t)

)

−1

(harmonic mean).

One can prove that k∗ is bounded, continuous and increasing function with the limits

lim
β→0

k∗(β) = kh, lim
β→+∞

k∗(β) =
1

〈φ〉2

∫ 1

0

φ2(y)k(y) dy.

We see that effective permeability is a function of the saturation and it varies be-
tween harmonic mean (that is the effective permeability in the case of slow flow) and
weighted arithmetic mean. Preliminary numerical calculations indicate that the fast
flow upscaling method adds bigger amount of diffusion in the effective equation com-
pared to the slow flow method, producing better approximation to the solution of the
heterogeneous problem. We remark finally that these formulas are easy to generalize
to nonperiodic case.
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