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Objectives : make a Schwarz DDM that has :
@ scalable properties
@ Atrtificial condition independant of the parameter
(even make convergent a divergent Schwarz method)
@ can be used as "black box”, no direct impact on the
implementation of local solver.
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e The Dirichlet-Neumann Map
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Let Q c R" a bounded domain with I' := 99 Lipschitz.

DtoN map
The trace operator : g
Yu e H'(Q), 3yu € H'/3(T) satisfying

oullgizgy < erllullp - (1)
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DtoN map

The Dirichlet to Neumann map

Let Q c R" a bounded domain with I' := 99 Lipschitz.

The trace operator : g
Yu e H'(Q), 3yu € H'/3(T) satisfying

oullgizgy < erllullp - (1)

vice versa the bounded extension operator : ¢
Vv € H'/2(I), 3ev € H'(Q) satisfying ypcv = v and

levilme < em-lVIlper)- 2)
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DtoN map

Set LOOU0X) = ~Ej 3800000 35 € Ll

L(.) is assumed to be uniformly elliptic,

Y7 io18i(x)§6 > co-[€2, V€ € R",Vx € Q
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s, 0
B Set L(X)u(x) = —=Xfj_y 5~ ox; [8i(X) g uX), 8 € Loo(AP)
o L(.) is assumed to be uniformly elliptic,

Y7_1ai(x)8& > co.lél?, V€ € R7,¥x € Q
The conormal derivative - is given by
0
u(x) := Zﬂj:mj(x)[aj,-(x)au(x)]y Vxerl
I

where n( x) is the exterior unit normal vector.
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G 0 0
oo Set LO0u(N) =~y 580 5 ul0) 8 € L)
o L(.) is assumed to be uniformly elliptic,

Y7_1ai(x)8& > co.lél?, V€ € R7,¥x € Q
The conormal derivative - is given by
0
u(x) := Zﬂjﬂnj(x)[aj,-(x)au(x)]y Vxerl
I

where n( x) is the exterior unit normal vector.

awn) = 3 [ Zviao o

ij=1

R = /Lu dx+/ u(x)ov(x)dSx



[CRoNC]
% S
BgH

AS DDM
DTD

DtoN map

Necas Lem. = 3lu = uy + =g € H'(R) sol. of Dirichlet Pb

L(x)u(x)

f(x), for x € Q,vyu(x) = g(x), for x € ' (4)
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DtoN map

Necas Lem. = 3lu = uy + =g € H'(R) sol. of Dirichlet Pb

L(x)u(x) = f(x),for x € Q,vu(x) = g(x), for x € ' (4)
Then defining the linear application Yw € H'/2(T)
I(w) = a(u,sw) —/ f(x)ew(c)dx.
Q

Riez thm : 3X € H=V2(T) : (A, W),y = I(w) Yw € H'/2(T").
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DtoN map

Necas Lem. = 3lu = uy + =g € H'(R) sol. of Dirichlet Pb

L(x)u(x) = f(x),for x € Q,vu(x) = g(x), for x € ' (4)
Then defining the linear application Yw € H'/2(T)
I(w) = a(u,sw) —/Qf(x)sw(c)dx.
Riez thm : 3X € H=V2(T) : (A, W),y = I(w) Yw € H'/2(T").
Hence, the conormal derivative A € H='/2(T) satisfies

/)\ w dsy = a(Up + =g, e W) —/ few dx Yw e H'2(T).
r Q
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DtoN map

Necas Lem. = 3lu = uy + =g € H'(R) sol. of Dirichlet Pb

L(x)u(x) = f(x),for x € Q,vu(x) = g(x), for x € ' (4)
Then defining the linear application Yw € H'/2(T)
I(w) = a(u,sw) —/Qf(x)sw(c)dx.
Riez thm : 3X € H=V2(T) : (A, W),y = I(w) Yw € H'/2(T").
Hence, the conormal derivative A € H='/2(T) satisfies
/r)\ w dsy = a(Ug + g, ew) — /Q few dx Yw e H'2(T).

= f fixed, we have aDtoN map : g =yu— A :=yu

u(x) = Sg(x)— Nf(x),YyweTl (5)
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@ The Generalized Schwarz Alternating Method
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The GSAM

The Generalized Schwarz Alternating Method (GSAM)

B. Engquist and H.-K. Zhao, Appl. Numer. Math. 27 (1998), no. 4, 341-365.

Consider Q = Q4 U Q, with the two artificial boundaries I'1, I's
intersecting 09.

Algorithm
Lx)u™(x) = f(x), ¥x € Qq, 2" (x) = g(x), Vx € 0 \I'y,
2n-+1 2n
ME™T N 7&118” () = MU5" + A ot (X), Vx ey
1
L(xX)ua"2(x) = f(x), Vx € Qa, U2"2(x) = g(x), Vx € N\l
au2n+2(x) 8U2n+1 (X)
2n+2 2 _ 2n-+1 1 r
/\2U2 + X 9 /\2U1 + Ao T , Vx €lo.

where A;’s are some operators and A;’s are constants.
(A = 1,0 =0,A2 =0, Ao = 1) Schwarz Neumann-Dirichlet
Algorithm
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If A\ =1 and A is the DtoN operator at I'1 associated to the
homogeneous PDE in 2, with homogeneous boundary

condition on 99, N 92 then GSAM converge in two steps.
prooflLete! =u—u",i=1,2,, then

L(x)el(x) = 0, V¥xeQq, el(x)=0, Vx € dQ\ly,
oel(x) 06J(x)
1 1 0 2
+ = + r
A1 ey an, Aie; oy Vx € [

since A¢ is the DtoN operator at 'y in Qo

0e)
241 ME) = ——24+2-0, > el =0inQ
8n1

Hence we get the exact solution in two steps []
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The GSAM

@ Pb : A; DtoN operators are global operators (linking all
the subdomains when > 3).
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The GSAM

@ Pb : A; DtoN operators are global operators (linking all
the subdomains when > 3).

@ In practice, the algebraical approximations of this
operators are used (see Nataf, Gander).
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@ Pb : A; DtoN operators are global operators (linking all
the subdomains when > 3).

@ In practice, the algebraical approximations of this
operators are used (see Nataf, Gander).

@ On the other hand, the convergence property of the

Schwarz Alternating methodology is used to define the
Aitken-Schwarz methodology.

The GSAM



[CRoNC]

B
AS DO Let Q = Q41 UQs, Q4o = Q21 NQp, Q,’,’ZQ,’\Q12
DTD el = u— u in Q; satisfies :
(M +MS))R1EE™ = (A — \1S2)RoaPo€5"
The GSAM (/\2 + )\ZSZ)RZQ?H_2 = (/\2 - )\2822):‘:1’11 P1 e.12n+1

with
@ Pi: H'(Q) — H'(Q)
@ S (S;) the DtoN map operator in Q; ( Qi) on [ (M mog(i2)+1)-
@ Ri: H'(Q:) — HVA(Ty), Ry - H' (i) — H'3(T mod(i2)+1);

® R : RR; =1,
Vg € H'2(I;), L(X)Rfg=0,R;g=gonl,Rrg=
0 on 8(2,-\F,-

Thus the convergence of GSAM is purely linear ! Aitken-Schwarz
DDM uses this property to accelerate the convergence :

R
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The GSAM

@ Consequently, no direct approximation of the DtoN map
is used, but an approximation of the operator of error
linked to this DtoN map is performed.



[CRoNC]
By e

AS DDM
DTD

Aitken-
Schwarz

© The Aitken-Schwarz Method
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
DTD Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

Aitken-
Schwarz



Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

AS DDM
DTD Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
@ additive Schwarz algorithm :
n+11 _ ¢ n+1 _ ;n
o Luf™]="finy, uijr = Uy,
n+11 _ £ n+1 _ . n
Atkon. o Lug"™'] =finS, Uy, = Ufir,-
Schwarz



Acceleration of Schwarz Method for Elliptic Problems
[ Pl
AS DDM M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
DTD Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002
@ additive Schwarz algorithm :
n+11 _ £ n+1 _ ;n
o Luf™]="finy, uijr = Uy,
n+11 _ £ n+1 _ . n
Ao o Lug"™'] =finS, Uy, = Ufir,-
Schwarz

@ the interface error operator T is linear, i.e

n+1 _ n

o ufr, — Ur, = d1(ugr, — Ur)),
n+1 _ n

® Uyr — = <52(u1|r2 - Ur,).
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Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,

Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

@ additive Schwarz algorithm :

n+11 _ £ n+1 _ .n
o Luf™]="finy, uijr = Uy,

n+171 : n+1 _ . .n
o Lug"™'] =finS, = Ufir,-

U2“_2

@ the interface error operator T is linear, i.e

n+
° Ujr

° Uy

- Ur, = 51(“5“'1 - ):

2

! = 62(U?|F2 - UIFZ)'

1

@ Consequently

2 1 1 0
, Ui, = 51(U2|r1 - U2|r1)7

1 10
W, = 52(U1|r2 U1|r2)7



[CRoNC]
% S
BgH

AS DDM
DTD

Aitken-
Schwarz

R

Acceleration of Schwarz Method for Elliptic Problems

M.Garbey and D.Tromeur-Dervout : On some Aitken like acceleration of the Schwarz method,
Int. J. for Numerical Methods in Fluids, 40(12) :1493-1513,2002

@ additive Schwarz algorithm :

n+11 _ £ n+-1

o Luf™]="finy, uijr = Uy,
n+1 g n+1

o Llug™'] =1inQe, uyr, = uf,.

@ the interface error operator T is linear, i.e
n+1 _ n
o ufr, — Ur, = d1(ug, — ih
n+1 _ n
® U, — = b2(Ufr, = Ur.)-
@ Consequently
2 1 _ 1 0
® Ujr, — Uy, = 01(Uyr, — Uy, ),
2 1 _ 1 0
® Uy, — Upr, = 02(Ugyr, = Ur,);

@ Computation of 645 :
L[V1/2] =0in Q1/2, Vr1/2 = 1. thus 51/2 = VF2/1 o

@ iff § # 1 Aitken-Schwarz gives the solution with exactly 3
iterations and possibly 2 in the analytical case.
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Example on a toy problem

—=V.T(u1,p1)

V.U1

T .= —,D1/

D(U1) = 1VU1
s + szpg =
V.Ug =

+ + |

B.C.: u = 0, on 891\F, P2 = 0 on 892\F

Beavers-Joseph-Saffman boundary condition on I

T

: Darcy-Stokes coupling

f1, in Q1
0, in Q1 Qi
2HD(U1)a

2

svul
0, in Qg
fg, in Qg

«
—n1.T(u1,p1).7-1 = —Uy.11, on [

K

Transmission conditions to close the system :

Ui.ny = Uo.Ny, on I

—ny. T(u1,p1).n = p2, onT.
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Schwarz

Example on a toy problem : Darcy-Stokes coupling

uir (X, y)
Upa(X, y)
pi(X,}/)

Y U1 k(x)cos(ky),
Y Ujp k(x)cos(ky),
Zﬁi,k (x)sin( ky)

Schwarz errors ey, €2, €jp for each mode k in €; satisfy ,

1/2
esr?(1)=0

n+1/2
€54 / (/)

530~ K2 () = 0,0 = 0.x €10,
'u8x2 e12(x) Mk2e?2(x) - ke?p(x) = O,VX 61077[7
8Xeﬁ( ) — kells(x) = 0,Vx €]0,9]
pkely (v) — mua%e?z('Y) —xeh(y)=0
ef;(0) = ef,(0) =0

[ ey 00 — keggo(x) = 0, ¥x el 1]
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™ N (0 p n"
;NN EANER IO
_ ptanh(k(1 —~)
pP = kK2
—4a sinh(ky) + 2 kK (e 257 — 2K 1 4 k) + 4 k2~2¢
—2ka (e72k7 — 2+ e2k7)

Aitken- p2 =

Schwarz

@ convergence (eventually
divergence) depends on
parameters value but not
of the iteration and not of ;]
the solution.

@ each mode can be
accelerated by the Aitken
process

o even Wlth p1 p2 Very l‘() Z‘l) 3‘(] 4‘() S‘U 6‘() 7b Sb 9‘() l(‘JO

R closed to 1. - Pl

with o = 100; K2 =0.01, = 1,7=0.5



D}
Example of linear convergence for the Schwarz Neumann-Dirichlet

g

AS DDM algo.
DTD
[a,T1]U[r1,T2] U2, 0], T1 < 2. Schwarz writes :
i1
AU1 = @i [a r1] AUé‘H—f) = fon [|_1,‘|_2]

ggmvr;rz (a) =0 , 6U£j+2)(r1) _ 8U$j)(|—1) ,(6)

_U=3) _on on

WO =87 | iy - i

Au = fon [Fg,ﬂ]

aug)( M) oud 2 (ry)
(j)an - on

U (ﬂ) =0

The error on subdomain / writes e;j(x) = ¢ix + d;.

o0 = e D=2, D) = Ll Prx- ) )

R
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Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Error on the second subdomain satisfies

) = Lryx -+ () (@)

. , .
Replacing Y)(I2) and 2 e¥(ry), eé“z)(x) writes :

1 r 8 (i1
ef D0 = - L= 2l ) + (2 - ) el Pr) (@)

Consequently, the following identity holds :

Mo — Iy

eV M2 —p (/ )
(M) \ _ [ a=r, ( ,(r)> 0
(&e?(r )) I AN C 1o
1

Consequently the matrix do not depends of the solution,
neither of the iteration, but only of the operator and the
shape of the domain.



Num. analysis for the Neumann-Dirichlet algo. (3 subdomains)

Convergence 3 domaines 10
T T T

—— Acceleration Aitken-Schwarz]
—— Schwarz normal

o 4

Aitken-
Schwarz
4 |
Vi
| [
3 \“w\h
7 W \ f
9 M
|l Y\*"‘
‘\N\(’H
8 v‘ \(m“ fy 4
1/ Yix
| X\M‘
0F o
s |
m I I I I I
0 2 40 60 80 100 120
iterations

R

Cvg for 1D Poisson pb with 3 non-overlapping subdomains o« = 0, 8 = 1, 7= 0.44 T, = 0.7
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@ Xiy1 —¢

P(% —

N

Aitken acceleration of convergence in n-D

L i=0,1,...
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Aitken acceleration of convergence in n-D
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@ X1 —E=P(X—¢),i=0,1,...
O(YN+1—YN o Xo — X )=
Aitken- > - . .
Sghsvnarz P( XN — XN—1 X1—X0)
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Aitken acceleration of convergence in n-D
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@ X1 —E=P(X%—¢€),i=01,...

. O(YN+1—YN )_('2—)_('1):
anen P( Xy —Xn—1 ... X1—Xo )
@ Thusif ( Xy —Xv_1 ... Xi —Xo )is non singular then P =
()_(,N+1*)_(,N )_('27)_(’1 )( )_(’Nf)?N,1 )_('17)_(’0 )_1

If ||P|| < 1 then £ = (ld — P)~'(Xni1 — PXy)
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Aitken acceleration of convergence in n-D

Qg8
AS DDM
DTD
0)_(’,‘+17§=P()_(’,‘7§),I':0,1,...
O(YN+1—YN )?2—)?1)2
Aftken 2 AL
Sohwarz P( Xn—Xn—1 ... X1—Xo )
@ Thusif ( Xy —Xv_1 ... Xi —Xo )is non singular then P =
()_(’N+1*)_(’N )_('27)_(’1 )( )_(’Nf)?N,1 )_('17)_(’0 )_1

If ||P|| < 1then & = (Id — P)~'(Rn.1 — PXn)
@ The construction of P claims at least N + 1 iterates if the
error components are linked together. =

e write the solution in a functional basis were the
components error are decoupled
e Construct an approximation of P
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; ; i i+ - ;
oy For GSAM with two subdomains, errors e’r,h = Urjh — UF’; satisfy

et el
£
(e,-h =P o (11)
r2 I
e o F’}, a discretisation of the interfaces
I, to be the coarsest discretisation in the sense that it
produces V the smallest set of orthonormal vectors &, that
belong to I', with respect to a discrete hermitian form [[., .]].
@ Let Ur, be the decomposition of Ur with respect to the
orthogonal basis V.
Urh = ZQ:O ak Pk
@ The « represents the "Fourier” coefficients of the solution
with respect to the basis V.
The orthogonality = ax = [[Ur, ®«]]

@ Then

iy L
ih :P I'h 12
R (e )=ra(2) . co

AS DDM
DTD
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For a separable operator in 2D or 3D and regular step size mesh

No coupling between the modes thus the operator P for the speed
up is a block diagonal matrix and n-D is analogous to the 1-D

o
o

for Schwarz each wave has is own linear rate of
convergence and high frequencies are damped first.

for high modes the matrix P can be approximate with
neglecting far Macro-Domains interactions.

step1 : build P analytically or numerically from data given by
two Schwarz iterates

step2 : apply one Jacobi Schwarz iterate to the differential
problem with block solver of choice i.e multigrids, FFT etc...

SOLVE SOLVE

step3 : exchange boundary information :
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oo @ step4 : compute the Fourier expansion aﬂr,-’ n= 0,1 of the

traces on the artificial interface I';,/ = 1..nd for the initial
boundary condition v, and the Schwarz iterate solution ur..

Aitken-
Schwarz

nzpA-
wZEeAA

@ stepb : apply generalized Aitken acceleration based on
0>~ = (ld—P)"" (&' — Pi°)

i s
in order to get U

Fmoop
fmoop
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3D DDM : Scalability of 1D AS (with PDC3D as inner solver)

bality in versus ins towards an ideal linear solver

2 macros 3 macros

o & macrgs

nwo CRAYS TIE
20

o curve: julich + HLRS

v cunve: CSC + HLRS

@ 3 Crays with 1280 procs (2 Germany, 1 USA) ,

@ 732 108 unknowns Pb solved in less than 60s with
||€]|oo < 1078

@ network 3-5 Mb/s (communication between 17s and 23s )

@ Barberou, Garbey, Hess, Resch, Rossi, Toivanen and Tromeur-Dervout, J. of Parallel and Distributed
Computing, special issue on Grid computing, 63(5) :564-577, 2003
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Explicit building of Py

uses how basis ¢, are modified by the Schwarz iterate.

’d

(@ {b)

Steps to build the Py ;; matrix

a starts from the the basis function ¢, and get its value on

interface in the physical space
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Explicit building of Py

uses how basis ¢, are modified by the Schwarz iterate.

’d

=

(@ {b)

Steps to build the Py ;; matrix

a starts from the the basis function ¢, and get its value on

interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on

00 = 8(91 n Qg)
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Explicit building of Py

uses how basis ¢, are modified by the Schwarz iterate.

’d

=

(@ {b)

Steps to build the Py ;; matrix

a starts from the the basis function ¢, and get its value on

interface in the physical space

b performs two schwarz iterates with zeros local right hand
sides and homogeneous boundary condition on

00 = 3(91 n Qg)

¢ decomposes the trace solution on the interface in the basis
V. We then obtains the column k of the matrix Py j;
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@ Py, can be compute in parallel, (# local subdomain solve =
_ # interface points, and the number of columns computed
Sowarz during the Schwarz iterates can be set according to the
computer architecture
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@ Py, can be compute in parallel, (# local subdomain solve =
Ao # interface points, and the number of columns computed
Schwarz during the Schwarz iterates can be set according to the
computer architecture

@ Its adaptive computation is required to save computing.
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@ Py, can be compute in parallel, (# local subdomain solve =
_ # interface points, and the number of columns computed
Sowarz during the Schwarz iterates can be set according to the
computer architecture

@ Its adaptive computation is required to save computing.

@ The Fourier mode convergence gives a tool to select the
Fourier modes that slow the convergence.



[CRoNCY
Bg8

Outline

AS DDM
DTD

Adaptive
Aitken-
Schwarz

e Non separable operator , non regular mesh, adaptive
Aitken-Schwarz
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Adaptive building of the non diagonal matrix Py, 3 (non separable pb/non

uniform mesh)

A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform
nonmatehing grigs submited (NON Uniform Fourier basis ortogonal with
respect to a numerical hermitian form)

@ Select Fourier modes higher than a fixed tolerance.
Index = array containing the list of selected modes.



D]
Adaptive building of the non diagonal matrix Py, 3 (non separable pb/non

o
AS DDM uniform mesh)
DTD

A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform
nonmatehing grigs submited (NON Uniform Fourier basis ortogonal with
respect to a numerical hermitian form)

Adaptive @ Select Fourier modes higher than a fixed tolerance.

anen Index = array containing the list of selected modes.

@ Take the subset v of Fourier modes from 1 to
max(Index).
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Adaptive building of the non diagonal matrix Py, 3 (non separable pb/non

o
AS DDM uniform mesh)
DTD

A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform
nonmatehing grigs submited (NON Uniform Fourier basis ortogonal with
respect to a numerical hermitian form)

Adaptive @ Select Fourier modes higher than a fixed tolerance.

anen Index = array containing the list of selected modes.

@ Take the subset v of Fourier modes from 1 to
max(Index).

@ Approximate Py j; with P[*[-,-]] using only V.
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Adaptive building of the non diagonal matrix Py, 3 (non separable pb/non

o
AS DDM uniform mesh)
DTD

A. Frullone & DTD :Adaptive acceleration of the Aitken-Schwarz Domain Decomposition on nonuniform
nonmatehing grigs submited (NON Uniform Fourier basis ortogonal with
respect to a numerical hermitian form)

Adaptive @ Select Fourier modes higher than a fixed tolerance.

anen Index = array containing the list of selected modes.

@ Take the subset v of Fourier modes from 1 to
max(Index).

@ Approximate Py j; with P[*[. 1 using only V.
@ Accelerate v through the equation :

V> = (ld = P )N (v" = P ")

Other modes are not accelerated.

R
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AS-DDM on a strongly non separable operator and irregular matching grids
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{ V.(a(x,y)V)u(x,y) = f(x,y), onQ=]0,1[?
u(x,y) =0, (x,y) € 0Q

a(x,y) =a + (1 — a)(1 + tanh((x — (3hxy +1/2 — h))/n))/2,
and @y = 10", u = 1072,

Adaptive
Aitken-
Schwarz
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FIG.: adaptive acceleration using sub-blocks of Py ;;, with 100

points on the interface, overlap= 1, ¢ = h,/8 and Fourier modes

tolerance = ||0¥||, /10’ for i = 1.5 and 3 for 1st iteration and i = 4
R for successive iterations.
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e Aitken meshfree acceleration
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= Toward a mesh free acceleration
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The two salient features of the Aitken-Schwarz methodology

@ Have a representation in a basis of the Boundary
condition. This basis having some orthogonality
property in order to separate the coefficient associated
to a vector of this basis.

Aken @ Have a decreasing of the coefficients of this

meshiree representation of the BC in this basis, in order to select
only the mode of interest in the Aitken acceleration
process.

@ = Singular value Decomposition (or Proper orthogonal
Decomposition) have these properties.

We can use the SVD of the BC values in order to build P
and to accelerate the convergence to the right BC.

R
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@ Let X{ =[xy, ..., Xg], be the traces of the g Schwarz
iterates.

Aitken
meshfree

Subject to numerical problem in the inverting

R
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@ Let X{ =[xy, ..., Xg], be the traces of the g Schwarz
|terates

@ Let Xj = USV the singular value decomposition of X.
(U*U—LWV I

Aitken
meshfree

Subject to numerical problem in the inverting
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@ Let X{ =[xy, ..., Xg], be the traces of the g Schwarz
|terates
@ Let Xj = USV the singular value decomposition of X.
(U*U—LWV I
Aitken
meshiree o Schwarz : XJt? — xJt! = p(Xg™" — X7

Subject to numerical problem in the inverting
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Aitken
meshfree

R

Aitken-Schwarz SVD : version 1

@ Let X{ =[xy, ..., Xg], be the traces of the g Schwarz
|terates

@ Let Xj = USV the singular value decomposition of X.
(U’*U—I V'V =1

o Schwarz : XJt? — xJt! = p(Xg™" — X7

@ Then U'(XJ™ — xJtH(u(xgt —xI) ' =UuPU=P

Subject to numerical problem in the inverting
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Aitken-Schwarz SVD : version 1
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@ Let X{ =[xy, ..., Xg], be the traces of the g Schwarz
|terates
@ Let Xj = USV the singular value decomposition of X.
(U’*U—I V'V =1
Aitken
meshiree o Schwarz : XJt? — xJt! = p(Xg™" — X7

@ Then U'(XJ™ — xJtH(u(xgt —xI) ' =UuPU=P

@ Xoo = U((I — P) " (U'xg12 — PU'xq11)

Subject to numerical problem in the inverting
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o Let X[ =[xy, ..., Xg], be the traces of the g Schwarz

iterates.

@ Let X[ = USV the singular value decomposition of X.
(UxU=1VvVVv=l

Aitken
meshfree

no inverting, more accurate
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o Let X[ =[xy, ..., Xg], be the traces of the g Schwarz
iterates.
@ Let X[ = USV the singular value decomposition of X.
U«u=1LvVv=lI
Altken @ Select the modes that be involved in the acceleration

meshfree

based on the singular value

no inverting, more accurate
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o Let X[ =[xy, ..., Xg], be the traces of the g Schwarz
iterates.
@ Let X[ = USV the singular value decomposition of X.
U«xu=LvVVvV=l
Altken @ Select the modes that be involved in the acceleration

meshfree

based on the singular value

@ Applied one Schwarz on the basis functions U* to
determine columns of P*

no inverting, more accurate
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o Let X[ =[xy, ..., Xg], be the traces of the g Schwarz
iterates.
@ Let X[ = USV the singular value decomposition of X.
U«xu=LvVVvV=l
Altken @ Select the modes that be involved in the acceleration

meshfree

based on the singular value

@ Applied one Schwarz on the basis functions U* to
determine columns of P*

e then x%, = U*((I — P*) " ((U'xgs2)* — P*(Uxq11)")

no inverting, more accurate
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Aitken-Schwarz SVD : version 2
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o Let X[ =[xy, ..., Xg], be the traces of the g Schwarz
iterates.
@ Let X[ = USV the singular value decomposition of X.
U«xu=LvVVvV=l
Altken @ Select the modes that be involved in the acceleration

meshfree

based on the singular value

@ Applied one Schwarz on the basis functions U* to
determine columns of P*

e then x%, = U*((I — P*) " ((U'xgs2)* — P*(Uxq11)")
@ Complete with the last iterate components.

no inverting, more accurate
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V.(K(x,y)Vu) =f, onQ, u= 0, on 9 in random porous media

Exponential covariance : Cy(x, y) = o%exp(—[(%)* + (%y)z]%)
Ax (Ay) is the directional In(K) correlation length scales

o2 is the variance of In(K)
log10(K)<[-7.28,7.69] distribution =4 =5, o’=4
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Schwarz DDM : random distribution of K along the interfaces
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Singular values of the SVD of the Schwarz iterates on T’
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Basis U of the SVD of the Schwarz iterates on
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Convergence of the Aitken-Schwarz SVD
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—e— Aitken-Scwharz-SVD
0 —*-Schwarz Classical
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R 16 modes are used in the acceleration process



Convergence of AS with acceleration based on SVD

K permeability with lognormal random distribution (2=5, 07=6) Aitken-Schwarz-SVD convergence for (1=5, 02=6), overlap=5h
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@ The two main features for Aitken acceleration are
orthogonal basis with decreasing coefficients for the
representation of the traces in this basis.
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orthogonal basis with decreasing coefficients for the
representation of the traces in this basis.

@ It works very well when this basis link to the mesh on
interfacial interface is available
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orthogonal basis with decreasing coefficients for the
representation of the traces in this basis.

@ It works very well when this basis link to the mesh on
interfacial interface is available

@ SVD decomposition as the right properties without the
drawback to be link to the underlying mesh.
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Conclusions

@ The two main features for Aitken acceleration are
orthogonal basis with decreasing coefficients for the
representation of the traces in this basis.

@ It works very well when this basis link to the mesh on
interfacial interface is available

@ SVD decomposition as the right properties without the
drawback to be link to the underlying mesh.

@ Parallel implementation of Aitken-Schwarz with SVD is

under progress in the framework of MICAS project for
large computational domain.
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