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Motivations

Motivation : Identify the initial condition in a geophysical system
Fundamental for a chaotic system (Lorenz, atmosphere, ocean, ...)
Difficulty : These systems are generally irreversible.

Comparison with 4D-VAR : Optimal control method minimizing the qua-

dratic difference between model and observations.
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Forward nudging

Let us consider a model governed by a system of ODE :

dX

with an initial condition X (0) = xy.

Xops(t) : observations of the system

C' : observation operator.

(dX

E:F<X>+K(X053—C<X)>, O<t<:r7
9
L X(O) = Xy,

where K is the nudging (or gain) matrix.

In the linear case (where F' is a matrix), the forward nudging is called Luen-
berger or asymptotic observer.
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Direct Nudging

— Meteorology : Hoke-Anthes (1976)

— Oceanography ( QG model) : Verron-Holland (1989)
— Atmosphere (meso-scale) : Stauffer-Seaman (1990)
— Optimal determination of the nudging coeffcients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),
Vidard-Le Dimet-Piacentini (2003)
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Direct Nudging : linear case

Luenberger observer, or asymptotic observer
(Luenberger, 1966)

(dX
E — FX—I—K(XObS — CX),
dX . )
— = FX, Xugs=0CX.

N dt

d

(X = X)=(F-KCO)(X — X)

If F— K(C is a Hurwitz matrix, i.e. its spectrum is strictly included in the
half-plane {\ € C; Re()\) < 0}, then X — X when t — +oc.

Dubrovnik, October 13-16 2008 4/26



Backward nudging

Backward model : (Auroux, 2003)
[ dX -
— =F(X), T>t>0,
{ dt
- X(T) = ar.

If we apply nudging to this backward model :

( dX <7 / %,
) G = FEO—K (X, = C(X)), T>1t>0,
| X(T) = 2.
=T —t:
( dX it / % /
< W:—F(X)Jrl( (Xops — C(X)), 0<t' <T,
\ X(O) = Z7.

In the linear case, —F — K'C must be a Hurwitz matrix.
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BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

Xo(0) = Zq (first guess)
( dXy,
! dt

X5(0) = Xi—1(0)

— F(Xk)+K<Xobs - C(Xk)>
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Cas simplifié (C' = Id, K = K')

Convergence in a linear case , with full observations :

D. Auroux, J. Blum, Back and forth nudging algorithm for data assimilation
problems, C. R. Acad. Sci. Ser. I, 340, pp. 873-878, 2005.

1i X = X
i Xe(0) = Xeo 0

T
_ (I_e—ZKT>_1/ (e—(K—I—F)S —|—€_2KT€(K_F>S) KXObS<S>dS.
0

t
lim X (1) = Xoo(t) = e (E-F)t / e B KX o(s)ds + e E=EX_(0).
— 400 0

If Xops(t) = eftxg, then, if K and F commute,

Xoo(t) = Xops(t), Vt €[0;T].
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Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

Xn—l—l _ X"

N = FX" 4 K( X — CX™H).

Variational interpretation : direct nudging is a compromise between the mini-
mization of the energy of the system and the quadratic distance to the obser-

vations :

A A
min %(X S XX - X" = SHFXX) 4+ SR (Xops — OX), Xopa — CX) |

by choosing
K=C"R™!

where R is the covariance matrix of the errors of observation.

Auroux-Blum, Nonlinear Processes in Geophysics (2008)
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Choice of the backward nudging matrix K’

The feedback term has a double role :
e stabilization of the backward resolution of the model (irreversible system)

e feedback to the observations

If the system is observable, i.e. rank[C,CF,...,CFN~1] = N, then there exists
a matrix K’ such that —F'— K'C is a Hurwitz matrix (pole assignment method).

In practice, K’ = k'C!" and kK’ can be chosen as being the smallest value making
the backward numerical resolution stable.
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4D-VAR

/ Observations
Lo X

z(0) = xo,

\

Tops(t) : observations of the system, C' : observation operator,
B and R : covariance matrices of background and observation errors

respectively.
J(xrg) = %(xo — ) B (zg — )
+ 5 [ on® = C@)] R o)~ Ca®)] d
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Optimality System

Optimization under constraints :

L (zo,2,p) = J(z0) + /OT <p, Z—f - F(g;)> dt

dx
T F
Direct model : dt (%)
z(0) = g
( T
dp OF S
—— = |5 C'R obs(t) — C(x(t
Adjoint model : < dt lax] P+ [Zobs (t) (z(2))]
p(T) =0
- : 0J .
Gradient of the cost-function : B = (2o — x3) — p(0) =0
L0

Le Dimet - Talagrand (86)
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NUMERICAL RESULTS
LorRENZ EQUATION
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Lorenz’ equations

( dx
=7 — 10 (y —
d

< d—i:28x—y—xz,
dz 8

@ T 3T

y(® - - X(t)

— Assimilation period : [0; 3], forecast : [3;6].
— Time step : 0.001.

— 31 observations (every 100 time steps).
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Convergence
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F1G. 1 — Difference between the k*" iterate Xk (0) and the exact initial condition x4, for the
3 variables versus the number of BFN iterations.
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Convergence
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F1G. 2 — Difference between two consecutive BEN iterates for the 3 variables versus the number
of BFN iterations.
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Convergence
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F1G. 3 — RMS difference between the observations and the BFN identified trajectory versus the
BFN iterations.
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Comparison with 4D-VAR
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F1G. 4 — Evolution in time of the reference trajectory (plain line), and of the trajectories identified
by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of perfect

observations and for the first Lorenz variable x.
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Comparison with 4D-VAR
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F1G. 5 — Evolution in time of the reference trajectories (plain line), and of the trajectories

identified by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of
noised observations (with a 10% gaussian blank noise) and for the first Lorenz variable .
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NUMERICAL REsuULTS
BURGERS EQUATION
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1D viscous Burgers’ equation

8_X_|_16’X2 B 0% X
ot 2 0s V@SQ

=0,

where X is the state variable, s represents the distance in meters around the

45°N constant-latitude circle and ¢ is the time.

The period of the domain is roughly 28.3 x 10°m. The diffusion coefficient v

2 s71. The time step is one hour, and the assimilation period is

is set to 10° m
roughly one month (700 time steps).
Data : every 10 time steps (10 hours), every 5 gridpoints, 5% RMS blank

gausslan error.
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Convergence
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F1G. 6 — RMS relative difference between two consecutive iterates of the BFN algorithm versus
the number of iterations.
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Convergence
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F1G. 7 — RMS relative difference between the BEN iterates and the exact solution versus the
number of iterations, at time ¢t = 0 (a) and at time ¢t =T (b).
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Comparison with 4D-VAR
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F1G. 8 — Evolution in time of the RMS difference between the reference trajectory and the

identified trajectories for the BFN (dotted line) and the 4D-VAR (dash-dotted line) algorithms, in
the case of perfect observations.
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BFN preprocessing
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F1G. 9 — Evolution in time of the RMS difference between the reference trajectory and the
identified trajectories for the BFN (dotted line), the 4D-VAR (dash-dotted line) and the BFN-
preprocessed 4D-VAR (dashed line) algorithms, in the case of noised observations (with a 5% RMS

error).
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Conclusions

e Easy implementation (no linearization, no adjoint state, no minimization

process)
e Very efficient in the first iterations
e Converges more rapidly than 4D-VAR
e Lower computational and memory costs than 4D-VAR
e Could be an excellent preconditioner for 4D-VAR
Perspective :

Test the algorithm on a primitive equation model, with realistic observations.
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