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Motivations

Motivation : Identify the initial condition in a geophysical system

Fundamental for a chaotic system (Lorenz, atmosphere, ocean, . . .)

Difficulty : These systems are generally irreversible.

Comparison with 4D-VAR : Optimal control method minimizing the qua-

dratic difference between model and observations.
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Forward nudging

Let us consider a model governed by a system of ODE :

dX

dt
= F (X), 0 < t < T,

with an initial condition X(0) = x0.

Xobs(t) : observations of the system

C : observation operator.










dX

dt
= F (X)+K(Xobs − C(X)), 0 < t < T,

X(0) = x0,

where K is the nudging (or gain) matrix.

In the linear case (where F is a matrix), the forward nudging is called Luen-

berger or asymptotic observer.
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Direct Nudging

– Meteorology : Hoke-Anthes (1976)

– Oceanography ( QG model) : Verron-Holland (1989)

– Atmosphere (meso-scale) : Stauffer-Seaman (1990)

– Optimal determination of the nudging coeffcients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),

Vidard-Le Dimet-Piacentini (2003)
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Direct Nudging : linear case

Luenberger observer, or asymptotic observer

(Luenberger, 1966)















dX

dt
= FX+K(Xobs − CX),

dX̂

dt
= FX̂, Xobs = CX̂.

d

dt
(X − X̂) = (F−KC)(X − X̂)

If F − KC is a Hurwitz matrix, i.e. its spectrum is strictly included in the

half-plane {λ ∈ C; Re(λ) < 0}, then X → X̂ when t → +∞.
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Backward nudging

Backward model : (Auroux, 2003)











dX̃

dt
= F (X̃), T > t > 0,

X̃(T ) = x̃T .

If we apply nudging to this backward model :










dX̃

dt
= F (X̃)−K ′(Xobs − C(X̃)), T > t > 0,

X̃(T ) = x̃T .

t′ = T − t :










dX̃

dt′
= −F (X̃)+K ′(Xobs − C(X̃)), 0 < t′ < T,

X̃(0) = x̃T .

In the linear case, −F − K ′C must be a Hurwitz matrix.
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BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

X̃0(0) = x̃0 (first guess)











dXk

dt
= F (Xk)+K(Xobs − C(Xk))

Xk(0) = X̃k−1(0)











dX̃k

dt
= F (X̃k)−K ′(Xobs − C(X̃k))

X̃k(T ) = Xk(T )
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Cas simplifié (C = Id, K = K
′)

Convergence in a linear case , with full observations :

D. Auroux, J. Blum, Back and forth nudging algorithm for data assimilation

problems, C. R. Acad. Sci. Ser. I, 340, pp. 873–878, 2005.

lim
k→+∞

Xk(0) = X∞(0)

=
(

I − e−2KT
)−1

∫

T

0

(

e−(K+F )s + e−2KT e(K−F )s
)

KXobs(s)ds.

lim
k→+∞

Xk(t) = X∞(t) = e−(K−F )t

∫

t

0

e(K−F )sKXobs(s)ds + e−(K−F )tX∞(0).

If Xobs(t) = eFtx0, then, if K and F commute,

X∞(t) = Xobs(t), ∀t ∈ [0;T ].
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Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

Xn+1 − Xn

∆t
= FXn+1 + K(Xobs − CXn+1).

Variational interpretation : direct nudging is a compromise between the mini-

mization of the energy of the system and the quadratic distance to the obser-

vations :

min
X

[

1

2
〈X − Xn, X − Xn〉 −

∆t

2
〈FX, X〉 +

∆t

2
〈R−1(Xobs − CX), Xobs − CX〉

]

,

by choosing

K = CT R−1

where R is the covariance matrix of the errors of observation.

Auroux-Blum, Nonlinear Processes in Geophysics (2008)
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Choice of the backward nudging matrix K
′

The feedback term has a double role :

• stabilization of the backward resolution of the model (irreversible system)

• feedback to the observations

If the system is observable, i.e. rank[C, CF, . . . , CFN−1] = N , then there exists

a matrix K ′ such that −F−K ′C is a Hurwitz matrix (pole assignment method).

In practice, K ′ = k′CT and k′ can be chosen as being the smallest value making

the backward numerical resolution stable.
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4D-VAR

Observations

t

xb

x0











dx

dt
= F (x),

x(0) = x0,

xobs(t) : observations of the system, C : observation operator,

B and R : covariance matrices of background and observation errors

respectively.

J(x0) =
1

2
(x0 − xb)

T B−1(x0 − xb)

+
1

2

∫

T

0

[xobs(t) − C(x(t))]
T

R−1 [xobs(t) − C(x(t))] dt
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Optimality System

Optimization under constraints :

L (x0, x, p) = J(x0) +

∫

T

0

〈

p,
dx

dt
− F (x)

〉

dt

Direct model :







dx

dt
= F (x)

x(0) = x0

Adjoint model :











−
dp

dt
=

[

∂F

∂x

]T

p + CT R−1 [xobs(t) − C(x(t))]

p(T ) = 0

Gradient of the cost-function :
∂J

∂x0
= B−1(x0 − xb) − p(0) = 0

Le Dimet - Talagrand (86)

Dubrovnik, October 13-16 2008 11/26



NUMERICAL RESULTS

LORENZ EQUATION
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Lorenz’ equations



































dx

dt
= 10 (y − x),

dy

dt
= 28 x − y − xz,

dz

dt
= −

8

3
z + xy.
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– Assimilation period : [0; 3], forecast : [3; 6].

– Time step : 0.001.

– 31 observations (every 100 time steps).
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Convergence
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Fig. 1 – Difference between the kth iterate Xk(0) and the exact initial condition xtrue for the

3 variables versus the number of BFN iterations.

Dubrovnik, October 13-16 2008 14/26



Convergence
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Fig. 2 – Difference between two consecutive BFN iterates for the 3 variables versus the number

of BFN iterations.
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Convergence
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Fig. 3 – RMS difference between the observations and the BFN identified trajectory versus the

BFN iterations.
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Comparison with 4D-VAR

0 1 2 3 4 5 6
−20

−15

−10

−5

0

5

10

15

20

Time

x

True
BFN
4D−VAR

Fig. 4 – Evolution in time of the reference trajectory (plain line), and of the trajectories identified

by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of perfect

observations and for the first Lorenz variable x.
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Comparison with 4D-VAR
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Fig. 5 – Evolution in time of the reference trajectories (plain line), and of the trajectories

identified by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of

noised observations (with a 10% gaussian blank noise) and for the first Lorenz variable x.
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NUMERICAL RESULTS

BURGERS EQUATION
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1D viscous Burgers’ equation

∂X

∂t
+

1

2

∂X2

∂s
− ν

∂2X

∂s2
= 0,

where X is the state variable, s represents the distance in meters around the

45oN constant-latitude circle and t is the time.

The period of the domain is roughly 28.3 × 106m. The diffusion coefficient ν

is set to 105 m2.s−1. The time step is one hour, and the assimilation period is

roughly one month (700 time steps).

Data : every 10 time steps (10 hours), every 5 gridpoints, 5% RMS blank

gaussian error.
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Convergence
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Fig. 6 – RMS relative difference between two consecutive iterates of the BFN algorithm versus

the number of iterations.
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Convergence
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Fig. 7 – RMS relative difference between the BFN iterates and the exact solution versus the

number of iterations, at time t = 0 (a) and at time t = T (b).
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Comparison with 4D-VAR
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Fig. 8 – Evolution in time of the RMS difference between the reference trajectory and the

identified trajectories for the BFN (dotted line) and the 4D-VAR (dash-dotted line) algorithms, in

the case of perfect observations.
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BFN preprocessing
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Fig. 9 – Evolution in time of the RMS difference between the reference trajectory and the

identified trajectories for the BFN (dotted line), the 4D-VAR (dash-dotted line) and the BFN-

preprocessed 4D-VAR (dashed line) algorithms, in the case of noised observations (with a 5% RMS

error).
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Conclusions

• Easy implementation (no linearization, no adjoint state, no minimization

process)

• Very efficient in the first iterations

• Converges more rapidly than 4D-VAR

• Lower computational and memory costs than 4D-VAR

• Could be an excellent preconditioner for 4D-VAR

Perspective :

Test the algorithm on a primitive equation model, with realistic observations.
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HAPPY BIRTHDAY

ALAIN
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