





# Convergence of Generalized Volume Averaging Method on a Convection-Diffusion Problem

#### Charles Pierre<sup>1</sup>, Franck Plouraboué<sup>2</sup>

<sup>1</sup>Laboratoire de Mathématiques Appliquées de Pau, UMR CNRS 5142 Université de Pau et des Pays de l'Adour.

<sup>2</sup>IMFT, Institut de Mécanique des Fluides de Toulouse, UMR CNRS 5502 Université Paul Sabatier. Financial support from GDR MOMAS

13-16 octobre 2008



#### Problems at ends





#### Problems at ends



#### Problems at ends





#### Averaging unidirectional convection-diffusion problems

• One direction diplay an invariant flow direction  ${f v}=(0,0,
u)$ 

# Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0,0,v)$
- Non-homogeneizable in direction z

# Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0,0,v)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description

## Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v}=(0,0,
  u)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description
- Interest for a "compartimental" description along z

## Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0, 0, v)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description
- Interest for a "compartimental" description along z

## Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0, 0, v)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description
- Interest for a "compartimental" description along z

- Center-manifold technique :
  - Roberts, SIAP, 20, (1989)
  - Mercer & Roberts SIAP, 50, (1990)

## Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0, 0, v)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description
- Interest for a "compartimental" description along z

- Center-manifold technique :
  - Roberts, SIAP, 20, (1989)
  - Mercer & Roberts SIAP, 50, (1990)
- Lyapunov-Schmidt reduction :
  - Balakotaiah & Chang, SIAP, **63**, (2003)
  - Balakotaiah & Chakraborty, 58, Chem. Eng. Science, (2003)

## Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0, 0, v)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description
- Interest for a "compartimental" description along z

- Center-manifold technique :
  - Roberts, SIAP, 20, (1989)
  - Mercer & Roberts SIAP, 50, (1990)
- Lyapunov-Schmidt reduction :
  - Balakotaiah & Chang, SIAP, 63, (2003)
  - Balakotaiah & Chakraborty, 58, Chem. Eng. Science, (2003)
- Taylor-like averaged expansions :
  - Phillips et al., JFM, 297, (1995),
  - Bryden & Brenner, JFM, 311, (1996)
  - Rosencrans, SIAP, 57, (1997)

# Averaging unidirectional convection-diffusion problems

- One direction diplay an invariant flow direction  $\mathbf{v} = (0, 0, v)$
- Non-homogeneizable in direction z
- Seeking for 1-D averaged description
- Interest for a "compartimental" description along z

- Center-manifold technique :
  - Roberts, SIAP, 20, (1989)
  - Mercer & Roberts SIAP, 50, (1990)
- Lyapunov-Schmidt reduction :
  - Balakotaiah & Chang, SIAP, **63**, (2003)
  - Balakotaiah & Chakraborty, 58, Chem. Eng. Science, (2003)
- Taylor-like averaged expansions :
  - Phillips et al., JFM, 297, (1995),
  - Bryden & Brenner, JFM, 311, (1996)
  - Rosencrans, SIAP, 57, (1997)
- Volume averaging



## Back to Graetz problem

Unit radius tube Axi-symmetry Large Péclet  $Pe \gg 1$ .



Taylor Approximation  $\rightarrow$  axial diffusion negligeable  $O(1/Pe^2)$ 

Directionnal problem  $\rightarrow$  A entry condition is given  $T_0(r)$ ,

$$\frac{1}{r}\partial_r(r\ \partial_r T) = Pe\ v(r)\ \partial_z T\ ,\quad T(r,0) = T_0(r)\ ,\quad T(1,z) = 0\ .$$

Eigen-function expansion  $\to T = \sum_{\lambda \in \Lambda} c_{\lambda} t_{\lambda}(r) e^{\lambda z}$ Eigenvalue problem  $\to \lambda$ ,  $t_{\lambda}(r)$ 

$$\Delta_c t_{\lambda} = \lambda \ \textit{Pe} \ \textit{v}(\textit{r}) \ t_{\lambda} \ , \ t_{\lambda}(1) = 0 \ .$$

# Averaging Graetz problem

• Average temperature  $T^*(z)$ 

$$T^{\star} = \int_0^1 T(r,z) r dr$$

- Searching for a 1-D Macroscopic equation for  $T^*(z)$
- Usual decomposition  $T(r,z) = T^*(z) + \theta(r,z)$
- Average temperature fulfills

$$\langle \Delta_c T \rangle^* = Pe\partial_z \langle vT \rangle^*$$

Deviation fulfills

$$\Delta_{c}\theta - \langle \Delta_{c}\theta \rangle^{\star} \equiv \mathcal{L}^{\star}\theta = (v - \langle v \rangle^{\star}) Pe\partial_{z} T^{\star} + Pe\partial_{z} (v\theta - \langle v\theta \rangle^{\star})$$

# Averaging Graetz problem

Closure relation :

$$T^{\star}(z) + \theta = \sum_{n} \alpha_{n}(r) \partial_{z}^{n} T^{\star}(z)$$

# Averaging Graetz problem

• Similar property for the exact solution?

$$T(r,z) = \sum_{n} a_n(r) \partial_z^n T^*(z)$$

• Since,

$$T(r,z) = \sum_{\lambda \in \Lambda} c_{\lambda} t_{\lambda}(r) e^{\lambda z}$$

Then

$$t_{\lambda}(r) = \sum_{n} a_{n}(r) \lambda^{n}$$

•  $\lambda$ -analyticity of the solution  $\Rightarrow$  Validity of closure relation

## Computing the averaged description

• closure problem for  $\alpha_n$ 

$$\begin{cases} \mathcal{L}^* \alpha_0(r) = 0 \\ \alpha_0^* = 1 \end{cases}$$

$$\begin{cases} \mathcal{L}^{\star}\alpha_{n} &= v(r)\alpha_{n-1}(r) - \langle v\alpha_{n-1}\rangle^{\star} & \text{with } \alpha_{-1}(r) = 0 \\ \alpha_{0}^{\star} = 1 & \text{or } \alpha_{n}^{\star} = 0 & \text{for } n \geq 1 \\ \alpha_{n}(1) &= 0 & \text{for } \mathcal{D} \\ \partial_{r}\alpha_{n}(1) &= 0 & \text{for } \mathcal{N} \end{cases}$$

• Macroscopic 1-D equation :

$$\sum_{n=0} K_n P e^n \partial_z^n T^*(z) = 0 \quad ,$$

$$K_n = \langle \Delta_c \alpha_n \rangle^* - \langle v \alpha_{n-1} \rangle^*, \quad K_n \in \mathbb{R},$$

# Theoretical questions

• 1.  $\lambda$ -analyticity proof?

#### Theoretical questions

- 1.  $\lambda$ -analyticity proof?
- 2. How does an average description approximate the full solution?
  - Convergence proof for volume averaging
  - Necessary conditions for convergence

#### Theoretical questions

- 1.  $\lambda$ -analyticity proof?
- 2. How does an average description approximate the full solution?
  - Convergence proof for volume averaging
  - Necessary conditions for convergence
- 3. How does it "converge" with n?

#### Theoretical questions

- 1.  $\lambda$ -analyticity proof?
- 2. How does an average description approximate the full solution?
  - Convergence proof for volume averaging
  - Necessary conditions for convergence
- 3. How does it "converge" with n?
- 4. Generalizations?

$$t_{\lambda}(r) = \sum_{n} a_{n}(r) \lambda^{n}$$

• Proven for Graetz problem in Pierre et al., SIAP, 66, (2006)

$$t_{\lambda}(r) = \sum_{n} a_{n}(r) \lambda^{n}$$

- Proven for Graetz problem in Pierre et al., SIAP, 66, (2006)
- Extension of the proof to :
  - Extended Graetz problem
  - Conjugate Graetz problem
  - Any concentric axi-symmetric configuration with inflow/backflow
  - Similar hypothesis in planar configurations

$$t_{\lambda}(r) = \sum_{n} a_{n}(r) \lambda^{n}$$

- Proven for Graetz problem in Pierre et al., SIAP, 66, (2006)
- Extension of the proof to :
  - Extended Graetz problem
  - Conjugate Graetz problem
  - Any concentric axi-symmetric configuration with inflow/backflow
  - Similar hypothesis in planar configurations
- Open issue: what about non-axi-symmetric configurations?

$$t_{\lambda}(r) = \sum_{n} a_{n}(r) \lambda^{n}$$

- Proven for Graetz problem in Pierre et al., SIAP, 66, (2006)
- Extension of the proof to :
  - Extended Graetz problem
  - Conjugate Graetz problem
  - Any concentric axi-symmetric configuration with inflow/backflow
  - Similar hypothesis in planar configurations
- Open issue: what about non-axi-symmetric configurations?

- $\lambda \in \Lambda$  : Boundary condition @r = 1
  - Diriclet
  - Neuman
  - Robin

- $\lambda \in \Lambda$  : Boundary condition @r = 1
  - Diriclet  $t_{\lambda}(1) = 0 = \sum_{n} a_{n}(1) \lambda^{n}$
  - Neuman
  - Robin

- $\lambda \in \Lambda$ : Boundary condition @r = 1
  - Diriclet  $t_{\lambda}(1) = 0 = \sum_{n} a_{n}(1) \lambda^{n}$
  - Neuman
  - Robin
- "Averaged" Spectrum  $\Lambda_p$ :

$$\lim_{p\to\infty}\Lambda_p=\left\{\lambda \quad / \quad \sum_{n=0}^p K_n\lambda^n=0\right\} \quad .$$

$$K_n = \langle \Delta_c \alpha_n \rangle^* - \langle v \alpha_{n-1} \rangle^*$$

- $\lambda \in \Lambda$  : Boundary condition @r = 1
  - Diriclet  $t_{\lambda}(1) = 0 = \sum_{n} a_{n}(1) \lambda^{n}$
  - Neuman
  - Robin
- "Averaged" Spectrum  $\Lambda_p$ :

$$\lim_{p\to\infty}\Lambda_p=\left\{\lambda\quad/\quad\sum_{n=0}^pK_n\lambda^n=0\right\}\quad.$$

$$K_n = \langle \Delta_c \alpha_n \rangle^* - \langle v \alpha_{n-1} \rangle^*$$

Convergence theorem for Graetz problem :  $\Lambda_p \cap \Lambda$  is not empty

•  $D_{acc}^{\star}: \lambda \in D_{acc}^{\star} \iff \sum_{n} \alpha_{n}(r) \lambda^{n}$  converges

- $D_{acc}^{\star}: \lambda \in D_{acc}^{\star} \iff \sum_{n} \alpha_{n}(r) \lambda^{n}$  converges
- Some  $\lambda \in \Lambda$  are not accessible! :  $\iff$  averaging loses "information" about the exact solution

- $D_{acc}^{\star}: \lambda \in D_{acc}^{\star} \iff \sum_{n} \alpha_{n}(r) \lambda^{n}$  converges
- Some  $\lambda \in \Lambda$  are not accessible! :  $\iff$  averaging loses "information" about the exact solution
- $D_{acc}^{\star}$  depends on boundary condition

- $D_{acc}^{\star}: \lambda \in D_{acc}^{\star} \iff \sum_{n} \alpha_{n}(r) \lambda^{n}$  converges
- Some  $\lambda \in \Lambda$  are not accessible! :  $\iff$  averaging loses "information" about the exact solution
- $D_{acc}^{\star}$  depends on boundary condition
- $D_{acc}^{\star}$  depends on the averaging (weight function)

- $D_{acc}^{\star}: \lambda \in D_{acc}^{\star} \iff \sum_{n} \alpha_{n}(r) \lambda^{n}$  converges
- Some  $\lambda \in \Lambda$  are not accessible! :  $\iff$  averaging loses "information" about the exact solution
- $D_{acc}^{\star}$  depends on boundary condition
- $D_{acc}^{\star}$  depends on the averaging (weight function)
- Compute  $D_{acc}^{\star}$  for various situations for Graetz problem in Pierre et al., SIAP, **66**, (2006)

## 3. How does it "converge" with n?



#### Conclusion and Perspectives

We analyse unidirectionnal convection/diffusion averaged description

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging
- Analyze the convergence of volume averaging

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging
- Analyze the convergence of volume averaging
- Only part of the true solution is accessible after averaging..

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging
- Analyze the convergence of volume averaging
- Only part of the true solution is accessible after averaging...
- Extension to more complex configurations

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging
- Analyze the convergence of volume averaging
- Only part of the true solution is accessible after averaging..
- Extension to more complex configurations
- Generality of the  $\lambda$ -analyticity property?

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging
- Analyze the convergence of volume averaging
- Only part of the true solution is accessible after averaging...
- Extension to more complex configurations
- Generality of the  $\lambda$ -analyticity property?
- Convergence proof in more complex configurations

- We analyse unidirectionnal convection/diffusion averaged description
- Proof for volume averaging
- Analyze the convergence of volume averaging
- Only part of the true solution is accessible after averaging...
- Extension to more complex configurations
- Generality of the  $\lambda$ -analyticity property?
- Convergence proof in more complex configurations
- With additionnal physical effects?