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e One direction diplay an invariant flow direction v = (0,0, v)
e Non-homogeneizable in direction z

Seeking for 1-D averaged description

Interest for a “compartimental” description along z
Several averaged description for this class of problems :

e Center-manifold technique :

e Roberts, SIAP, 20, (1989)
e Mercer & Roberts SIAP, 50, (1990)

e Lyapunov-Schmidt reduction :

e Balakotaiah & Chang, SIAP, 63, (2003)

e Balakotaiah & Chakraborty, 58, Chem. Eng. Science, (2003)
e Taylor-like averaged expansions :

o Phillips et al., JFM, 297, (1995),

e Bryden & Brenner, JFM, 311, (1996)

e Rosencrans, SIAP, 57, (1997)

e Volume averaging
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Back to Graetz problem

Unit radius tube
Axi-symmetry z
Large Péclet Pe > 1.

Taylor Approximation —  axial diffusion negligeable O(1/Pe?)

o

Directionnal problem — A entry condition is given Ty(r),

%8, (ro,T) = Pev(r)0,T , T(r,0) = To(r) , T(1,z) = 0.

Eigen-function expansion — T =", ) cata(r)e??

Eigenvalue problem — A, ty\(r)

Acty = X Pe V(f‘) ty t)\(l) =0
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Averaging Graetz problem

Average temperature T*(z)

1
T = / T(r,z) rdr
0

Searching for a 1-D Macroscopic equation for T*(z)
Usual decomposition T(r,z) = T*(z) + 6(r, z)

Average temperature fulfills
(AT = Ped, (vT)*

Deviation fulfills

Al — (A = L0 = (v — (v)*) Ped, T* + Ped, (vO — (v0)*)
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Averaging Graetz problem

e Similar property for the exact solution?
T(r,z) = ) an(r)2T*(2)
n

e Since,

T(r,z) = Zc)\t)\(r)e)‘z
AEN
e Then

t(r) = ) an(r) A"

e M\-analyticity of the solution = Validity of closure relation



Introduction Analyse

Computing the averaged description

e closure problem for «,

ﬁ*ao(r) =0
{ ag =1
Lan, = v(ranp1(r) = (vay—1)* with a_1(r)=0
ag=1 or ay=0 for n>1
ap(l) = 0 for D
Orap(l) = 0 for N

e Macroscopic 1-D equation :

> KaPe"0]T*(2) =0
n=0

Kn = <Acan>* - <V05n—1>* , KneR,
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Theoretical questions

. A-analyticity proof?
. How does an average description approximate the full solution?

o Convergence proof for volume averaging
e Necessary conditions for convergence

. How does it “converge” with n?

4. Generalizations ?
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2. Convergence proof for volume averaging

e )\ € A : Boundary condition @r =1
e Diriclet t\(1) =0= )", a,(1) A"
e Neuman
e Robin

e “Averaged” Spectrum A, :
p
mpo={3 1 S0 =o)
Ky = (Acan)” — (vap_1)*

Convergence theorem for Graetz problem : A, N A is not empty
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2. Necessary conditions for convergence

D}.c : A e Dy,

I ree <= >, an(r)A\" converges
Some A € A are not accessible! : <= averaging loses

“information” about the exact solution
D*

acc

D*

acc

depends on boundary condition

depends on the averaging (weight function)

Compute D} for various situations for Graetz problem in

Pierre et al., SIAP, 66, (2006)
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3. How does it “converge” with n?
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Conclusion and Perspectives

We analyse unidirectionnal convection/diffusion averaged
description

Proof for volume averaging

Analyze the convergence of volume averaging

Only part of the true solution is accessible after averaging..

Extension to more complex configurations
Generality of the A-analyticity property ?
Convergence proof in more complex configurations
With additionnal physical effects?

Analyse



	Introduction
	Analyse

