Dispersion with memory in porous media:
fractal MIM MODEL

fluxes and dispersion equation for the transport of particles, which
can get trapped in some sites of the solid matrix
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1. Motivation

1.a. depending on medium AND tracer a contaminant can

spread FASTER or SLOWER than according to ADE with v=Darcy's flow

both effects may combine without equilibrating

SLOWER 1is apparently the more significant when tracer=colloid
(more especially BACTERIA) and

WITH PASSIVE TRACERS in UNSATURATED MEDIA
more especially in bounded domains?




1.b. Memory effects. not included in ADE: Breakthrough curves with heavy tails

with bacteria

NORMALIZED CONCENTRATION

particles seem to be retained in the
medium
then released



2. Fract(ion)al MIM model

2.2 Models for diffusion with that memory effects

MIM model fractional Fokker Planck equation
5tC<x,t)=(KA—VV)C<x,Z)—ﬁ(C—C1) ﬁyC<x,t)=(KA—vV)C(x,t)

0.C,(x,1)=a(C~C,)

t

(8,+Ah(1)%8,)C(x,1)=(K A—vV)C(x,1)

hit)=e ™



2.b Fractional MIM model /fractional diffusion equation

fractional MIM model (1d+30")8.Clx.1)=—V (KV—v)C(x,1)
|
1 t 1 . .
Iﬁf(t)zm fo (t—t ’)B f(t ')dt ’ convolution with power kernel
conservative form 0,C(x,t)=—V (KV—=v)(Id+A1'7)"'C(x,1)

flux



Advection diffusion equation

Fractional Fokker-Planck equation
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3. Random walks

3.a. Brownian motion

For particles performing random jumps after each time step T
w.r.t. a frame, moving at speed v

successive jumps: independent gaussian random variables,
distributed as N (0,1)
K — 12/2 T l , T — O

trajectory of 1 particle
2 I | I I | | I I I

Flux= vC(x,t)-K0.C(x,t)

0 100 200 300 400 500

Fick's law, Fourier's law, Einstein's reasoning



3.b. In some media, certain tracers stick the solid matrix or stay motionless

during random periods

bacteria

water

in a column o . .
1 bacteria, immobilized in a

small cave on a sand grain




4. The flux of walkers which can stick while performing a random walk

4.a. The random walk

Suppose, particles stick the solid matrix of a porous medium,
after each time step and each gaussian jump
during random sticking periods, of density W (t )=t Ve(t/T")

Laplace transfg

g(s)=1—-ATs"+...

2 phases: mobile and sticking C, [x,t)=C (x,t)+C, (x,t)

tot,

to be connected with

Flux= va(x,t)—Kﬁme(x,t)



4.b. Mobile ., immobile, or total population

Particles, sticking at x at time t, came from the mobile phase, at time [t',t'+dt']

with probability — dr’

C,(x,t")
then, sticked there, with (survival) probability Y (t—t')=




4.c. A mapping connecting total and mobile concentration, hence giving the flux

in the limit T ,
] }-’ O with K=I"12T

C.=(ld+AI'"")C,  ===>  C, =(Id+AI'"”)'C

m tot

Flux= (v—Ka )(Id+AI'7”)'C

tot

Fick's law for media where particles stick some
immobile matrix



the mapping (/z+a71' )"

D'

late times

early W , |

Id

Riemann-Liouville derivative of the order of
1=y

with the definition

D*f(t)=0,1' “f(t)



4.d. Consequence: Fract(ion)al MIM model with sources

0,C(x,t)=—V (KV—=v)(Id+A1'7)"'C(x,t)+r(x,1)

/

source rate

equivalent to

(8t+A8§/)C(x,t):—v.(KV—v)C(x,t)—l—(ld+2\1\_y)r(x,t)

when K and v are constant



5. Numerical illustration

constant coefficients

5.a. Schemes for

0.C(x,t)==V.(KV—=v)Id+AI"")"'C(x,t)+r(x,t)

t

equivalent to

(6,4#A0")C(x,t)=—V (KV—=v)C(x,t)+(Id+A1""")r(x,1)

discretize  j;4 7' theninvert

2 interesting schemes:
or

use schemes for Caputo derivative



5.b.Comparisons against random walks

constant source at x=0.5 for t between 0 and 0.5

concentration profiles
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flux at the outlet

0,002 . . | . . . .

F(x] 1)




Conclusion

A model for memory effects, coherent with immobilization periods
In terms of fluxes

Numerical discretization

Some parameters are visible in the asymptotic behaviour
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M IM diffusion

=

hydrodynamic limit:

U:Brownian motion

operational time=clock time t

with random immobilizations
inserted

hydrodynamic limit:
operational time+
U(operational time)
=clock time t
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