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Position of the problem

◮ Motivation
Large class of multiscale problems are described by partial
differential equations with heterogeneous coefficients.
Such coefficients represent the properties of a composite
material or heterogeneity of the medium in the computation of
flow in porous media

◮ Difficulty
Computation of an accurate discrete solution of such problems
requires a very fine discretisation.
⇒ High storage and computation costs.

◮ Interest
The average behaviour of the elliptic oscillatory operator on a
coarse scale taking into account the small scale features of the
solution.
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References: Different types of multiscale methods

◮ Weinan/Engquist: Heterogeneous multiscales methods(2003)

◮ Brewster/Beylkin: Multiresolution Methods (1995)

◮ Babuška-Osborn: Generalised Finite Element Method: 1d (1983)
Hou-Wu: Generalised to 2d (1997)

◮ Variational multiscale approach introduced by Hughes and
Brezzi, Arbogast for a mixed variant.

Our approach: to provide a smoother elliptic operator which behaves
like the original operator on a coarse mesh, with no smoothness or
periodicity requirement.
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Outline

◮ Multiscale approach
◮ Model problem
◮ Finite element framework
◮ Reformulation of the problem

◮ Theory for periodic coefficients in 1d

◮ Numerical Results in 1d
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Model problem

The elliptic boundary value problem on Ω, a bounded Lipschitz
domain in R

d,






Lu = f , in Ω,

u = 0 , on ∂Ω,
with L = −

d
∑

i,j=1

∂

∂xj
αij

∂

∂xi
(1)

f ∈ L2(Ω). The coefficients αij ∈ L∞(Ω) may be oscillatory or
jumping .
Let λ, λ > 0 s.t. the matrix function α(x) = (αij(x))i,j=1,...,d satisfies
0 < λ ≤ λ(α(x)) ≤ λ for all eigenvalues λ(α(x)) of α(x) and almost all
x ∈ Ω.
Difficulty: Accurate discrete solution of such problems requires a very
fine discretisation.
 High storage and computational costs.
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Notation

◮ V = H1
0 (Ω).

◮ Let TH be a regular grid adapted to the coarse level.

◮ Let VH be the P 1-Lagrange FE-space associated to TH , with
dim VH = m.

◮ Let PH be some prolongation from the macroscopic level to the
continuous level.

◮ Let RH be a restriction operator associated to PH .
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Formulation

The use of the Green function of the operator L, allows to consider
L−1. We have the following diagram:

fH

L−1
H

L−1

uf

uH

RH
PH
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Problem 1: Let LH ∈ R
m×m be defined by

LH :=
(

RHL−1PH

)−1
.

Can LH be interpreted as an approximation AH of some local
differential operator A with the step size H?

Difficulty: The Green function is not always explicitely given.
Idea Consider a very small step size h s.t. h ≪ H and the
discretisation Lh of the operator L on a fine grid Th.
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Finite element framework

1. Let Vh be the P 1-Lagrange FE space Vh = span{bh
1 , . . . , bh

n} and
dim Vh = n s.t. VH ⊂ Vh.

2. Isomorphisms Ph and its adjoint Rh ∈ L(V ′, Rn) defined by

Ph : R
n → Vh ⊂ V

v = (v1, . . . , vn) 7−→ Ph v =
n

∑

i=1

vi bh
i

and Rh = P ∗h .

3. Let Mh ∈ R
n×n and MH ∈ R

m×m be the mass matrices:
Mh := Rh Ph and MH := RH PH .

4. The FE-stiffness matrix Lh is given by

Lh = Rh L Ph .
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The inclusion VH ⊂ Vh ensures that the following mappings are well
defined:

◮ The prolongation operator Ph←H from the coarse grid TH to the
fine grid Th given by

Ph←H = (P−1
h PH) : R

m −→ R
n

◮ The restriction operator RH←h =
(

Ph←H

)∗
from the fine grid Th

to the coarse grid TH .

Normalised prolongation and restriction: P̃h←H : R
m → R

n

P̃h←H := Mh Ph←H M−1
H and R̃H←h :=

(

P̃h←H

)∗
.

Let ||| · ||| be the norm defined for a matrix X ∈ R
m×m by

|||X ||| := ‖PH X RH‖L2(Ω)←L2(Ω) = ‖M
1/2
H X M

1/2
H ‖2 .
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Reformulation of the Problem

With help of H-arithmetic the computation of the discrete operator
L−1

h on the fine mesh is possible. Therefore the following matrix LH,h

is available

LH,h :=
(

R̃H←hL−1
h P̃h←H

)−1

.

Problem 1 with the operator LH,h leads to Problem 2:

Problem 2: We are looking for an elliptic operator A ∈ L(V, V ′) such
that its discretisation AH on the coarse grid satisfies:

AH ≈ LH,h for all h small enough. (2)
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Remarks

◮ Engineer’s point of view: average solution for f given on a coarse
level.

◮ The inverse L−1
h is treated with Hierarchical Matrices

(H-matrices).

◮ Hierarchical Matrices arithmetic: low cost for arithmetic and
storage.

◮ Storage of LH,h and not Lh.

◮ Once LH,h is computed, it can be use as much as one needs.
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Solution of problem 2 in 1d
Let the elliptic operator A be defined by

A = −
d

dx

(

a
d

dx

)

where the coefficient a is given on each segment [xH
j , xH

j+1] by

a|[xH
j ,xH

j+1]
=

1

θj
where θj =

1

xH
j+1 − xH

j

∫ xH
j+1

xH
j

ds

α(s)
.

For α T-periodic, H > T , H and T proportional

a =
1

M( 1
α )

= α0 where M
( 1

α

)

=
1

T

∫ T

0

dx

α(x)
.

Homogenisation in 1d: Exact solution u = L−1f is approximated by
the homogenised one u0 = L−1

0 f with a precision depending on the
period T
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Theory for periodic coefficient in 1d
Error estimate The following error estimate holds

|||L−1
H,h − L−1

0,H ||| ≤ C
(

ε(h) + T M
( 1

α

)

(1 + T ) + ε0(H)
)

,

where ε(h) (resp. ε0(H)) is a bound on the FE-discretisation error of
L on the fine mesh Th (resp. of the homogenised L0 on TH ).
Idea of the proof:

1. Decomposition of the Green function G associated to L:
G(x, t) = G0(x, t) + RT (x, t),

2. Let Bh (resp. B0,H) be Galerkin discretisation of L−1 on Th (resp.
of L−1

0 on TH ) ⇒ Bh = B0,h + BT,h.
3. Bebendorf/Hackbusch gives

||L−1
0,H − M−1

H B0,H M−1
H ||2 ≤ 2 ‖M−1

H ‖2 ε0(H)

||L−1
h − M−1

h Bh M−1
h ||2 ≤ 2 ‖M−1

h ‖2 ε(h) .

4.
∥

∥BT,h

∥

∥

2
≤ C h T M

( 1

α

)

(1 + T ) .
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Numerical Results in 1d: Ω = [0, 1]

Periodic coefficient

Let α > 0 be the T -periodic, piecewise constant defined on a period
[0, T [ by:

α(x) =























8.1 , x ∈ [0, T
4 [

0.3 , x ∈ [T
4 , T

2 [

20.55 , x ∈ [T
2 , 3 T

4 [

1.0 , x ∈ [ 3 T
4 , T [ .

◮ Computation of the norm |||L−1
H,h −A−1

H ||| for h = 10−5 and different
values of H between 1/2 and 50 h, and the period T is varying
between T = 10−3 and T = 10−4.

◮ Computation of the discrete solution uh = L−1
h f , u0 = L−1

0 f ,
uH,h = L−1

H,hf for a constant right-hand side f = 10 and the step
sizes h = 2−13 and H = 2−7.
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H2

log
“

|||L
−1
H,h

− A
−1
H

|||
”

represented as a function of

log(H). h = 10−5 and

T = 1/500, 1/1000, 1/2500, 1/5000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
uh
uHh
u0

Representation of uh = L
−1
h

f , u0 = L
−1
0

f ,

uH,h = L
−1
H,h

f , for f = 10, h = 2−13 , T = 2−3 ,

and H = 2−7 .

◮ Convergence of order almost 2 when H is large in comparison
with T .

◮ uH,h is matching uh. The details of uh are well captured by uH,h,
whereas u0 interpolates the fine solution uh.
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Non-periodic oscillatory coefficient

Let α be defined by α(x) =
[

2 − sin(2 π tan(x π
2 ))

]−1
on Ω = [0, 1]

−→ contains a continuum of scales
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P
P

P
P

H

h
1/ 1000 1/ 2000 1/ 4000 1/ 8000

1/2 8.60e-3 8.58e-3 8.59e-3 8.61e-3
1/5 7.70e-3 7.68e-3 7.68e-3 7.68e-3

1/10 3.36e-3 3.35e-3 3.35e-3 3.34e-3
1/20 1.08e-3 1.06e-3 1.04e-3 1.04e-3
1/25 8.56e-4 8.57e-4 8.59e-4 8.61e-4
1/50 3.22e-4 3.22e-4 3.22e-4 3.23e-4
1/100 1.94e-4 1.91e-4 1.89e-4 1.88e-4
1/200 9.23e-5 8.29e-5 7.90e-5 7.80e-5
1/250 7.07e-5 6.21e-5 5.89e-5 5.77e-5
1/400 – 3.84e-5 3.57e-5 3.46e-5
1/500 3.42e-5 2.97e-5 2.65e-5 2.54e-5

1/1000 2.82e-15 1.30e-5 1.37e-5 1.02e-5
1/2000 – 4.55e-14 5.63e-6 5.58e-6
1/4000 – – 6.53e-14 2.49e-6

|||L
−1
H,h

− A
−1
H

´

|||, for h = 1/1000, 1/2000, 1/4000,

1/8000
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−2

log(H)

lo
g

(e
(H

,h
))

log
“

|||L
−1
H,h

− A
−1
H

´

|||
”

is represented as a

function of log(H) for h = 1/8000

Notwithstanding the very oscillatory behaviour of the coefficient α,
Good convergence of the norm: globally order 1.
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Conclusion

1. In 1d, the discrete operator LH,h :=
(

R̃H←hL−1
h P̃h←H

)−1

on the

coarse mesh behaves like the discretisation of an elliptic
operator.

2. One possible approximation is given by A = − d
dx

(

a d
dx

)

, where a

is the piecewise harmonic average of α.

3. Currently: Numerical experiments in 2d.

For more details, see:
Greff/Hackbusch, Numerical methods for elliptic multiscale problems,
16 (2), J. of Numer. math, 107-138 (2008).
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