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Physical problem

Setting The Physical Problem

-

Convection diffusion problem

A high number of small sources lying on hyperplan X..
Very small size details ( < one meter).

Very large domain ( > few kilometers).

Long time study ( > 10° years ).

= Direct numerical simulations for performance
assesment not realistic.



Homogenization Process

Homogenization process

m Separate the domain into two domains €; and €,
(Z =N Qz)

m Reduce the sources to only one on ¥.

m Coupling the problems in €; and €, by an interface
condition on ¥, depending on physical parameters :

m More simple case : Flux Jump on L.
m More interesting case : differential problem on X.



The non standart interface condition Problem

For sake of Simplicity, whithout transport :

%—Aqﬂrwzf in(QU),0<t< T (la)
$=0, on(F\X),0<t<T, (1b)
[gmz—AUb:g onX, 0<t<T, (1)
[¢le=0 onX 0<t<T (1d)
(b(t =0, ) =¢o in (Ql U Qg) (le)

Where [-] denotes the jump through the interface .

Q,

327

The non standart interface
condition Problem



Stationary problem

Let consider first the stationary case
(Coming from, for example, the implicit time discretization of
the above problem)

—Ap+p=1F in(QUQ), (2a)
6=0, on(r\x), (2b)
5o, ~aro=g onx (2)
[¢]s =0 onX (2d)



Equilibrium Formulation

Mixed Formulation for problems in Q; =1, 2.
pi=Ve¢ inQ;i=12 (3a)

—div pj+¢=Ff inQ;,i=1,2 (3b)

(3¢)

(3d)

lp-n]—Asp=g on¥
¢=0, onl\X

m Let us intsoduce the product space :
_ : - _
W= H H(div, Q;) with ||.[|w = (Z ||~||12L1(div,sz,-)1/2 The Approimae
i=1 i=1
= We denote by Athe trace of ¢ on X, A = ¢z € Hj(X).
VgeW,> <pnagi>oa + <divp,div g >o0
i=1
2
—<XAlgn >y = =) <f,divg >o0f4a)

i=1

Vi) € Hy(E), < Vs¢, Vst >ox  + < [p.n], ) >5x=< g, u(3h)



Equilibrium Formulation

Find (p,A) € W x H}(X) such that, ¥(g,) € W x HL(E) :
%hs

2

AP N, (g, 0) == < f,divg; >00 + <& ¥ >x (5)
i=1

where the bilinear form A(.,.) is defined by

2
A((p7 )‘)a (qa’l/))) = Z <pi,qi >0,0 + < div p,',diV 4i >0,9;
i=1
- < A\lq.n] >5
+ < V3yo,Vsh >o5 + < [p.n],z/; >y . (6)

Theorem

There exists a unique solution (p, \) of the weak formulation
(5). Moreover ¢ is the weak solution of the problem (2).



The Approximate Problem

Let us introduce finite dimensional subspaces

WP c H(div, Q;), W, H W/, and My c H}(X).

the abstract discrete formulatlon of (5) is given by :

Find (pn, An) € Wy, x My such that, Y(qn, Y1) € Wy x My,

A((Pn, An), (ans Y1) Z < f,divgn >0,0, + < g, ¥y (RTINS



The Approximate Problem

Using Lax-Milgram theorem and Céa Lemma leads to the
following approximation result

Theorem

Let (p,\) € W x HY(X) be the solution of the continuous
problem (5). The problem (7) admits a unique solution
(pns An) € Wy, x My and there exists a constant C
independent of h and H such that

1x<C inf { llp—anllw

_ + A=A
lp = pullw + | H (Ghs i) EWh X My
+ A= Yull1(8)

The Approximate Problem



Finite Element Discretization

Basic finite element Choice of W/ and My, :

m regular triangulations 73 of the domain Q with triangular ks
(d = 2) and tetrahedral (d = 3) finite elements whose
diameters are less or equal than h, and

W} = {qn € H(div,Q:);VT € Th, qn, € RT(T)}

where RT,(T) is the Raviart-Thomas finite element space

m a regular subdivision Sy of ¥ with intervals (d = 2) or

triangles (d = 3) with diameters less or equal than H, and
My = {1 € Hy(X); VS € Sh,tbns € Pi(S)}

| being a given positive integer.



Finite Element Discretization

For such a choice of discretizations, one can state the following
error estimate,

Theorem

Assuming the solution (p, \) of (5) is such that
2 o
p € [Tie1(H7 ()9, and
divp e [T, (H (2))?,0 <o < k+1, and X € H*() with
1 < s < I+1, there exists a positive constant C independent
of discretization parameters such that
Discretization

lp = pallw + [|A = Aullrs < C{O(h) + O(H*1)}



NonStationary problem

Let us introduce a discrete equilibrium formulation of the
implicit non stationary problem :

k+1 o (i)
( h>uh) (divpgth un) = (f,un)
(7) (Pt an) + (divas, o) = <l[gnn], A >
< Vz/\ZJr ,Vyap> = —< [pk+1 n],ah >
+ < g,op >

Theorem

NonStationary problem

This scheme (7) is proved to be stable. Moreover if

p e ([T (H7=(Q0))), 1/2 < 05 < 1,

¢ € H(L2(Q)), X € L>®°(HYo1(X)), with, 0< 0,01 <1,
the solution satisfies the following error estimate,

(_sup ll¢* — dhllo) + At [Ip* — phlloq + AN~ Mylys <
1<k<N

C(101pnse (i20am 1ol Looire (e cmay A oo izor s | [HIIHA%2+| At|7+1/2]



Numerical Tests

m 2 dimensional geometry

Q,

1933

m Stationary Case.

Numerical Tests



Domain Decomposition Algorithm

Let consider (pn;), i = 1,2 the restriction of (pp) to the
domain ;. let denote

ai(pn,i, qn.i) = (Pn,i, Gn.i)o,0; + (div ppi,div gnido.0, =19
bi(An, gn,i) = (An, [gn,i - n])s — (fn,i, div gn,i)o.q; i =11D)
as (¢r, Y1) = (Vsdn, Vsion)s (11)
bs (pn, ¥H) = (gn — [pn - n], YH)x (12)

Domain décomposition :

solving in // two uncoupled problems in Q; and €,

Solving the coupling problem on X
Let denote(p} ;, Aj, ¢fy) the n — th decomposition domain
iteration values of (pn i, An, OH)



Decomposition Domain Algorithm

Algorithm 1 Domain decomposition algorithm

A0 given, n=1;

€ <« 1 given, error =1;

while error > ¢ do
Solve a;(pf ;, qn,i) = bi(A"*, qni), i =1,2
Solve ax (¢, 1) = bs(pj ;. ¥),

n .__ n .
A= b=
n:=n+1
1/2
_ n n—12
error = E ||Ph,i*Ph,i |O,Q,-

i=1,2

|
end while At




Numerical Results

Let consider the analytic test case :

x(1=x)(2—y) if (x,y)e
o(x,y) = {

x(1—x) if (x,y)eX
x(1 —x)sin(m/2y) if (x,y) €€ Q

which is solution of the initial problem with source term (f, g)

defined by

_ L @+x(t=x)(2-y) if (x,y) €
floy) = {(x(l—x)(1+7r2/4;/+2)sin(7r/2y) if (x,i) ce D
g6) = 2-x(1-x)

The test case
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Conclusions

Conservative method for non standart interface condition

Coupled system in which all matching conditions remain
implicit.

Numerical scheme and errors estimates.

Decomposition domain algorithm.

— to be implemented in the underground waste repository
situation.

Conclusions
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