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Introduction

Studies of unsteady and diphasic problems in porous medias.

Need to respect the maximum principle:
Let f > 0,
Let u(x) the solution of the following diffusion problem:{

∆u(x) = f on Ω
u(x) = u0(x) on ∂Ω

We suppose that u0 ∈ L2(Ω) so for all x ∈ Ω

min

{
0, inf

Ω
u0

}
≤ u(x) ≤ max

{
0, sup

Ω
u0

}
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Governing equations

Let the following heterogeneous anisotropic diffusion problem:{
− div (Λ(x)∇u(x)) = f(x) on Ω

u(x) = 0 on ∂Ω

K

CK,σ

xK

mσ

nK,σ

xσ

dK,σ

mK

Λ(x) can be a highly
discontinuous function,

The mesh can’t be too flat.

The weak formulation of the problem is: u ∈ H1
0 (Ω),∫

Ω
Λ(x)∇u(x).∇v(x)dx =

∫
Ω
f(x)v(x)dx, ∀v ∈ H1

0 (Ω)
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Approximation of the initial problem

The scheme consists in finding uD ∈ XD,0 such that:

〈uD, v〉D,α =

∫
Ω
f(x)PM(v(x))dx ∀v ∈ XD,0

⇔
uD = argminv∈XD,0

JD,α(v)

With :

XD = {v =
(
(vK)K∈M , (vσ)σ∈E

)
, vK ∈ IR, vσ ∈ IR}

XD,0 = {u ∈ XD, uσ = 0, σ ∈ Eext}

JD,α(v) =
1

2
〈v, v〉D,α −

∫
Ω
f(x)PMu(x)dx ,∀v ∈ XD,0

Important issue : to find the expression of the bilinear form
〈., .〉D,α
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Approximation of the initial problem

The symmetric and coercive bilinear form:

〈u, v〉D,α =
∑
K∈M

(
mK∇Ku.ΛK∇Kv

+αK
∑
σ∈EK

mσdK,σRK,σ(u)RK,σ(v)nK,σ.ΛKnK,σ

)

The discrete gradient:

∇Ku =
1

mK

∑
σ∈EK

mσ(uσ − uK)nK,σ ,∀K ∈M,∀u ∈ XD

RK,σ(u) =
uσ − uK −∇Ku.(xσ − xK)

dK,σ
,∀K ∈M,∀σ ∈ EK
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Presentation

Quality of the solution may depends on the choice of α

An optimal choice of α exists: α will appear as the
Lagrangian Multipliers of a monotony condition.

RK,σ: a measure of the local curvature of the discrete
solution.

RK,σ(u) =
uσ − uK −∇Ku.(xσ − xK)

dK,σ

We notice that:

If


u linear function
uσ = u(xσ)
uK = u(xK)

then RK,σ(u) = 0
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Presentation

Idea: To build a constraint on RK,σ in order to decrease the
oscillation,

Practical the constraint is the following:

GEK(v) =
1

2

∑
σ∈EK

mσdK,σnK,σ.ΛKnK,σR2
K,σ(v)−mKε

We introduce a new constrained space:

XED,0 =
{
v ∈ XD,0 , GEK(v) ≤ 0, ∀K ∈M

}
The initial problem without constraint is:

Find uD ∈ XD,0 such as: uD = argminv∈XD,0
JD,α(v)

The new constrained problem is :

Find u∗D ∈ Xε
D,0 such as: u∗D = argminv∈Xε

D,0
JD,β(v)
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Presentation

Characterization of the solution of the constrained problem

Let β = (βK)K∈M be a family of strictly positive reals, let ε > 0.

Then there exists one and only one solution u∗D to the problem
with constraints, which satisfies:
there exists a family of non negative reals λ∗D = (λ∗K,D)K∈M such

as (u∗D, λ
∗
D) ∈ Xε

D,0 × IRM+ is a saddle point of the function L :

L(v, λ) = Jβ(v) +
∑
K∈M

λKG
ε
K(v)

and the so-called Kuhn and Tucker relations

λ∗K,DG
ε
K(u∗D) = 0 , ∀K ∈M

The following relation holds:

〈u∗D, v〉D,(β+λ∗D) =

∫
Ω
f(x)PMv(x)dx
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Convergence

Theorem

Hypothesis :

let D be a discretization of Ω,
let β = (βK)K∈M be a family of reals such that
{βK ,K ∈M} ⊂

[
β, β

]
,

let εD > 0 be given,
let u∗D be the unique solution of the constrained problem.

Then

u∗D → u in L2(Ω) as hD → 0 and hD√
εD
→ 0

∇Du∗D → ∇u in L2(Ω)
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Convergence

Elements of proof: Let φ ∈ C∞c (Ω), we get

〈u∗D, PDφ〉D,β + T1 (u∗D, PDφ)2 =

∫
Ω
f(x)PMPDφ(x)dx

With

T1 (w, v) =
∑
K∈M

λ∗D,K
∑
σ∈EK

mσdK,σRK,σ(w)RK,σ(v)nK,σ.ΛKnK,σ

〈u∗D, PDφ〉D,β converges to

∫
Ω

Λ(x)∇u(x).∇φ(x)dx∫
Ω
f(x)PMPDφ(x)dx converges to

∫
Ω
f(x)φ(x)dx

Proof of T1 tends to 0:
The Cauchy-Schwarz inequality,
The consistency of RK,σ(PDφ)
The estimate on the solution of the constrained scheme:

‖u∗D‖1,D ≤
‖f‖L2(Ω) C1

α0
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Error estimate with Λ(x) = Id

Theorem

We assume that Λ(x) = Id. We assume also that the weak
solution u satisfies u ∈ C2(Ω) and we consider the same
hypothesis as previously.
Then there exists C2 depending only on d,Ω, θ, α, α and u such
that:

‖u∗D − PD(u)‖1,D ≤ C2

(
hD√
εD

+ h2
D

) 1
2

there exists C3 depending only on d,Ω, θ, α, α and u such that:

‖PMu∗D − u‖L2(Ω) ≤ C3

(
hD√
εD

+ h2
D

) 1
2

and there exists C4 depending only on d,Ω, θ, α, α and u such that:

‖∇Du∗D −∇u‖L2(Ω)d ≤ C4

(
hD√
εD

+ h2
D

) 1
2
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Presentation of the Test

Test 3 of the Benchmark on ”discretization schemes for
anisotropic diffusion problems on general grids”*: oblique
flow

Heterogeneous anisotropic tensor (θ = 40◦):

Λ = Rθ

(
1 0
0 10−3

)
R−1
θ ,

Heterogeneous boundaries conditions are continuous and
piecewise linear:

Using the Uzawa’s algorithm (the problem without constraint
substituting α by β + λ)

* Raphaele Herbin and Florence Hubert,2008
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Reference results

Values of the pressure using the non-constrained scheme
on a grid with 65536 control volumes.
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Results using the constrained scheme

Results using the constrained scheme on a grid with 1024
control volumes.

Values of the pressure Values of (βK + λ∗K)K∈M

Comparison with the solution on a fine grid shows an
acceptable accuracy,

The value of λ is increased only where it is needed.



Introduction Description of the hybrid finite volume scheme The scheme with constraints Numerical results Conclusion

Results using the constrained scheme

Influence of the constraint on the solution

Influence of the uzawa algorithm on the pressure profile taken at y=4,69 e-2
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Non constrained scheme,      
Fine grid with alpha=1

Non constrained scheme,      
Coarse grid with alpha=1e-6

Constrained scheme,            
Coarse grid with alpha=1e-6

Profile at y = 0.0469 using a grid with 1024 control volumes.

High decrease of pressure oscillations
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Conclusion

We propose a method which makes it possible to increase the
monotony of the solution,

We propose a mathematical analysis,

Finally, we show some numerical results which are in
agreement with the theoretical analysis.

References :

R. Eymard, R. Gallouët and R. Herbin, ”A new finite volume
scheme for anisotropic diffusion problems on general grids :
convergence analysis”,C.R.Acad.Sci.Paris, 2007
R. Eymard, R. Gallouët and R. Herbin, ”Discretization
schemes for heterogeneous and anisotropic diffusion problems
on general non conforming meshes”, Submitted, 2008
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Conclusion

Thanks for your attention !!!!
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Proof of the convergence

Proof of the convergence

Let φ ∈ C∞c (Ω), we get

〈u∗D, PDφ〉D,β + T1 (u∗D, PDφ) =

∫
Ω
f(x)PMPDφ(x)dx

With
T1 (w, v) =

∑
K∈M

λ∗D,K
∑
σ∈EK

mσdK,σRK,σ(w)RK,σ(v)nK,σ.ΛKnK,σ

We have that
〈u∗D, PDφ〉D,β converges to

∫
Ω

Λ(x)∇u(x).∇φ(x)dx∫
Ω
f(x)PMPDφ(x)dx converges to

∫
Ω
f(x)φ(x)dx

So we must prove that T1(u∗D, PDφ) tends to 0.
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Proof of the convergence

We apply the cauchy-Schwartz inequality :

T1 (u∗D, PDφ)2 ≤ T1 (u∗D, u
∗
D)T1 (PDφ, PDφ)

Thanks to the consistency of RK,σ, we have that there exists
C5 depending only on d, θ and Ω such as :

|RK,σ(PDφ)| ≤ C5hD

So
T1 (PDφ, PDφ) ≤ C2

5h
2
Dλ

∑
K∈M

λ∗KmK

Thanks to the following estimate on the solution of the
constrained scheme if (u∗D, λ

∗
D) is the saddle point

∑
K∈M

λ∗KmK ≤ ‖f‖2
L2(Ω)

C2
1

2α0ε
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Proof of the convergence

Thus we have:

T1 (PDφ, PDφ)2 ≤ C6
h2
D
ε

Hence, under the condition that
hD√
εD

tends to 0, we get that

T1(uD, PDφ) tends to 0 as well.

The complete proof was made in :

R. Eymard, R. Gallouët and R. Herbin, ”A new finite volume
scheme for anisotropic diffusion problems on general grids :
convergence analysis”,C.R.Acad.Sci. Paris,2007

R. Eymard, R. Gallouët and R. Herbin, ”Discretization
schemes for heterogeneous and anisotropic diffusion problems
on general non conforming meshes,Submitted,2008
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Lagrange multipliers

Theorem (Lagrange multipliers 1/2)

Let:

V a finite dimensional euclidean space

K the convex closed non empty subset of V , defined by

K = {v ∈ V, Gi(v) ≤ 0, for 1 ≤ i ≤ p } ,

Gi : V → IR convex, continuously and differentiable

J : V → IR strictly convex function such that
lim|u|→∞ J(u) = +∞
u? the unique solution of the minimization problem

u? = argminu∈KJ(u)
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Lagrange multipliers

Theorem (Lagrange multipliers 2/2)

Then:
∃ β? such as (u?, β?) saddle point of L : V × IRp → IR defined by

L(u, β) = J(u) +

p∑
i=1

βiGi(u)

Moreover, the so-called Kuhn and Tucker relations hold: ∇J(u?) +

p∑
i=1

β?i∇Gi(u?) = 0,

β?iGi(u
?) = 0, ∀i = 1, . . . , p,

(1)

are satisfied. Reciprocally, if there exists (u?, β?) such that
relations (1) are satisfied, then u? = argminu∈KJ(u) and (u?, β?)
is a saddle point of L.
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Uzawa’s algorithm

Uzawa’s algorithm

The aim is to find an approximation of the solution u∗ of the
minimization problem.
Let ρ > 0, we define (un, βn), ∀i = 1, . . . , p, ∀n ∈ IN by

un = argminu∈V L(u, βn)

β
(n+1)
i = max(βni + ρGi(u

n), 0)
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Uzawa’s algorithm

Theorem (Convergence of Uzawa’s algorithm 1/2)

Let:

V a finite dimensional euclidean space

K the convex closed non empty subset of V , defined by

K = {v ∈ V, Gi(v) ≤ 0, for 1 ≤ i ≤ p } ,

Gi : V → IR convex, continuously and differentiable

J : V → IR continuously differentiable function such that
there exists α > 0 with

(∇J(u)−∇J(v), u− v) ≥ α‖u− v‖2, ∀u, v ∈ V, (2)

M = max{
∑p

i=1 ‖∇Gi(u)‖2, ‖u‖ ≤ B}
We assume: ∃B ≥ 0: ∀β ∈ (IR+)p, ‖argminu∈V L(u, β)‖ ≤ B.
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Uzawa’s algorithm

Theorem (Convergence of Uzawa’s algorithm 2/2)

Then for all ρ ∈ (0, α
2M ) and for all β(0) ∈ (IR+)p, the sequence

defined by

un = argminu∈V L(u, βn)

β
(n+1)
i = max(βni + ρGi(u

n), 0)

is such that (un)n∈IN converges to the solution u? of

u? = argminu∈KJ(u)

.
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