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Abstract. We consider arbitrary parabolic subalgebras A ⊆ Mn (i.e. subalgebras of Mn

which contain the algebra of upper-triangular matrices) and their Jordan embeddings. We
first describe Jordan embeddings ϕ : A → Mn as maps of the form

ϕ(X) = TXT−1 or ϕ(X) = TXtT−1,

where T ∈ Mn is an invertible matrix, and then we obtain a simple criteria of when one
parabolic subalgebra Jordan-embeds into another (and in that case we describe the form
of such embeddings). As a main result, we characterize Jordan embeddings ϕ : A → Mn

(when n ≥ 3) as continuous injective maps which preserve commutativity and spectrum. We
show by counterexamples that all these assumptions are indispensable (unless A = Mn when
injectivity is superfluous).

1. Introduction

Jordan algebras were first introduced by Pascual Jordan in 1933 in the context of quantum
mechanics [19]. The majority of the practically relevant Jordan algebras naturally arise as
subalgebras of an associative algebra A under a symmetric product given by

x ◦ y = xy + yx.

This gave rise to the study of Jordan homomorphisms in the context of associative rings and
algebras. Namely, recall that an additive (linear) map ϕ : A → B between rings (algebras) A
and B is a Jordan homomorphism if

ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b), for all a, b ∈ A.
When the rings (algebras) are 2-torsion-free, this is equivalent to

ϕ(a2) = ϕ(a)2, for all a ∈ A.
Clearly, multiplicative and antimultiplicative maps are immediate examples of such maps.
One of the main problems in the context of Jordan homomorphisms is under which assump-
tions on rings (algebras) A and B, usually without 2-torsion, can we conclude that every
Jordan homomorphism ϕ : A → B (possibly satisfying some extra conditions such as surjec-
tivity) is either multiplicative or antimultiplicative. More generally, the question is whether
one can express all such Jordan homomorphisms as a suitable combination of ring (algebra)
homomorphisms and antihomomorphisms. This question goes a long way back. Namely, in
1950 Jacobson and Rickart [18] proved that a Jordan homomorphism from an arbitrary ring
into an integral domain is either a homomorphism or an antihomomorphism. This paper is
particularly relevant for our discussion as it also proves that a Jordan homomorphism from

Date: November 16, 2023.
2020 Mathematics Subject Classification. 47B49, 15A27, 16S50, 16W20.
Key words and phrases. Jordan homomorphisms, spectrum preserver, commutativity preserver, upper-

triangular matrices, matrix algebras, parabolic algebras.

1
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the ring of n×n matrices, n ≥ 2, over an arbitrary unital ring is the sum of a homomorphism
and an antihomomorphism. In the same vein, Herstein [16] concludes that a Jordan homo-
morphism onto a prime ring is either a homomorphism or an antihomomorphism. The same
result was later refined by Smiley [30].
Let Mn be the algebra of n× n matrices over the field of complex numbers. By combining

the aforementioned result of Herstein with the well-known fact that all automorphisms of
Mn are inner (for a short and elegant proof see [29]), one obtains that all nonzero Jordan
endomorphisms ϕ of Mn are precisely maps of the form

(1.1) ϕ(X) = TXT−1 or ϕ(X) = TXtT−1

(globally) for some invertible matrix T ∈M×
n .

There have been many attempts to characterize Jordan homomorphisms, particularly on
matrix algebras, using preserver properties. These attempts date back at least to 1970 and
Kaplansky’s famous problem [20] which asks under which conditions on unital (complex)
Banach algebras A and B is a linear unital map ϕ : A → B which preserves invertibility
necessarily a Jordan homomorphism. This problem received a lot of attention and progress
was made in some special cases, but it is still widely open, even for C∗-algebras (see [7],
page 270). For other interesting types of linear preserver problems resulting in more general
kind of maps, we refer to the survey paper [21] and references within. We would also like
to distinguish the following nonlinear preserver problem which elegantly characterizes Jordan
automorphisms of Mn:

Theorem 1.1 (Šemrl). Let ϕ : Mn → Mn, n ≥ 3 be a continuous map which preserves
commutativity and spectrum. Then there exists T ∈M×

n such that ϕ is of the form (1.1).

A precursor to this result was first formulated in [27] and it assumed its current form a
decade later in [28]. It also serves as the main motivation for our investigation. Namely, we
are interested in the following general problem:

Problem 1.2. Find necessary and sufficient conditions on a (Jordan) subalgebraA ofMn such
that each Jordan automorphism ofA, or more generally a Jordan embedding (monomorphism)
ϕ : A →Mn, extends to a Jordan automorphism ofMn. Additionally, for such A, characterize
all such mappings ϕ via suitable preserving properties, similarly as in Theorem 1.1.

The first natural example to consider in the context of Problem 1.2 is the algebra Tn
of n × n upper-triangular complex matrices. First of all, it is well-known that all Jordan
automorphisms of Tn are of the form (1.1) for suitable T ∈ M×

n (see e.g. [25, Corollary
4]). The same holds true for all Jordan embeddings Tn → Mn (a special case of our first
result, Theorem 1.3). Also, Jordan automorphisms of Tn (as well as more general type of
maps on Tn) were characterized via both linear and nonlinear preserving properties by several
authors (see e.g. [11, 12, 13, 14, 17, 22, 26, 35]). In particular, following Theorem 1.1, Petek
[26] described all Jordan automorphisms of Tn as continuous spectrum and commutativity
preserving surjective mappings Tn → Tn. Analyzing the main result of [26] it is easy to verify
that the same holds true if instead of surjectivity one assumes injectivity, thus providing a
positive solution for (both parts of) Problem 1.2 when A = Tn.
Continuing in this vein, the next class of algebras we consider are subalgebras A of Mn

which contain Tn. Such algebras are known in the literature as parabolic subalgebras of Mn
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(see e.g. [1, 32]) and are precisely of the form

(1.2) Ak1,...,kr :=


Mk1,k1 Mk1,k2 · · · Mk1,kr

0 Mk2,k2 · · · Mk2,kr
...

...
. . .

...
0 0 · · · Mkr,kr


for some r, k1, . . . , kr ∈ N such that k1 + · · ·+ kr = n [32]. In other words, these are precisely
the algebras of so-called block upper-triangular matrices. Note that the parabolic algebras
A1,n−1 andAn−1,1 are exactly (up to similarity) the unital strict subalgebras ofMn of maximal
dimension (see [1]). Our first introductory result verifies that parabolic algebras indeed satisfy
the desired extension property, providing an affirmative answer for the first part of Problem
1.2:

Theorem 1.3. Let A ⊆ Mn be a parabolic subalgebra and let ϕ : A → Mn be a Jordan
embedding. Then there exists T ∈M×

n such that ϕ is of the form (1.1).

After providing the short proof of Theorem 1.3 (in Section §3) we also present simple criteria
of when one parabolic algebra (Jordan-)embeds into another (see Corollary 3.2 and 3.3). To
put Theorem 1.3 in a wider context, there is a number of related (and somewhat more general)
results concerning Jordan homomorphisms on certain classes of (block) upper-triangular rings
and algebras. For example, an influential result by Beidar, Brešar and Chebotar states that
every Jordan isomorphism of the algebra of upper-triangular matrices Tn(C), n ≥ 2 over a
2-torsion-free commutative unital ring C without nontrivial idempotents onto an arbitrary
C-algebra is necessarily multiplicative or antimultiplicative [4]. A generalization was given in
[23] by removing the assumption that C has no nontrivial idempotents. These results were
further developed by Benkovič in [5]; any Jordan homomorphism from Tn(C), n ≥ 2 into an
algebra B is a (so-called) near-sum of a homomorphism and an antihomomorphism. We also
mention papers [6, 15, 33, 34] which treat similar problems for Jordan homomorphims between
more general types of (block) triangular matrix rings.
Concerning parabolic subalgebras in particular, the papers [3, 8, 9] (all sequels of the afore-

mentioned paper [5]) describe Jordan homomorphisms of certain classes of more general al-
gebras. As parabolic algebras are (up to isomorphism) precisely finite-dimensional instances
of nest algebras, papers [10, 24] are also relevant. Note that many of the mentioned results
above assume that the image of Jordan homomorphisms are rings or algebras. In Theorem 1.3
we make no such assumption but this is obviously compensated by the fact that the codomain
is restricted to Mn, which incidentally also enables us to state the explicit form (1.1) of such
maps.
After verifying that parabolic algebras A satisfy the first part of Problem 1.2, the next step

is to characterize Jordan embeddings ϕ : A →Mn via suitable preserver properties. Building
upon both Theorem 1.1 and [26, Corollary 3], we arrived at the following theorem, which is
also the main result of our paper:

Theorem 1.4. Let A ⊆ Mn, n ≥ 3 be a parabolic subalgebra and let ϕ : A → Mn be a
continuous injective map which preserves commutativity and spectrum. Then ϕ is a Jordan
embedding and hence of the form (1.1) for some T ∈M×

n .

Moreover, if we additionally assume that the image of ϕ is contained inA, so that ϕ : A → A,
using the invariance of domain theorem we show that the spectrum preserving assumption
can be further relaxed to spectrum shrinking (Corollary 4.2).
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This paper is organized as follows. We begin by providing terminology and notation in
Section §2 along with some preliminary technical results related to parabolic algebras. Section
§3 contains the proof of Theorem 1.3 and its consequences regarding (Jordan) embeddings
between two parabolic subalgebras of Mn. Section §4 is the core of the paper. It contains the
proof of Theorem 1.4, which is nontrivial and contains most of the actual work. The proof
is carried out by induction on n. The base step verifies the result on parabolic subalgebras
of M3 for which the statement is proved by direct technical computations. The inductive
step consists of reducing the order of the parabolic algebra by passing to a map obtained by
erasing a suitable row and column, which satisfies the same assumptions. Then we notice that
the problem can be simplified by assuming that our map is the identity on certain carefully
selected sets (like diagonal matrices, matrix units and rank one matrices), a fact which we
iteratively exploit until we reach the entire parabolic algebra. After proving Theorem 1.4 a
few direct consequences are stated. Finally, in Section §5, we demonstrate the necessity of all
assumptions of Theorem 1.4 via counterexamples.

2. Preliminaries

We begin this section by introducing some notation and terminology. Let n ∈ N.

• Mn :=Mn(C) denotes the set of all n× n complex matrices.
• Tn and Dn denote the sets of all upper-triangular and diagonal matrices of Mn, re-
spectively.

• Ak1,...,kr denotes the parabolic algebra (1.2) for some r, k1, . . . , kr ∈ N such that k1 +
· · ·+ kr = n. Additionally, in this context we allow kj = 0 for some 1 ≤ j ≤ r in the
sense Ak1,...,kj−1,0,kj+1,...,kr = Ak1,...,kj−1,kj+1,...,kr . We also formally define k0 = 0.

• For A,B ∈Mn we denote by A↔ B the fact that A and B commute, i.e. AB = BA.
• For A ∈Mn by kA we denote the characteristic polynomial of A.
• For A ∈Mn we denote by R(A) the image of A and by N(A) the nullspace of A.

By A and B we usually denote complex algebras. For a unital algebra A, by A× we denote
the set of all invertible elements in A. Note that when A is finite-dimensional, the set A× is
path-connected in A. Namely, for every A ∈ A× by finiteness of the spectrum we can take
an appropriate branch of the logarithm to conclude that A = expB for some B ∈ A. Then
t 7→ exp(tB) is a (continuous) path from I to A within A.

As usual, we will frequently identify vectors x = (x1, . . . , xn) ∈ Cn as column-matrices

x =

x1...
xn


and xt =

[
x1 · · · xn

]
as row-matrices.

Any matrix A = (Aij)ij ∈ Mn can be understood as a map {1, . . . , n}2 → C, (i, j) 7→ Aij

so we can consider its support suppA as the set of all indices (i, j) ∈ {1, . . . , n}2 such that
Aij ̸= 0.
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Lemma 2.1. Let

J :=


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 ∈Mn.

Then the map Ak1,...,kr → Akr,...,k1 , X 7→ JXtJ is an algebra antiisomorphism.

Proof. It suffices to show that JXtJ ∈ Akr,...,k1 for all X ∈ Ak1,...,kr . Indeed, for each
0 ≤ s ≤ r − 1, 1 ≤ i ≤ k1 + · · ·+ ks+1 and k1 + · · ·+ ks + 1 ≤ j ≤ n we have

JEt
ijJ = En+1−j,n+1−i ∈ Akr,...,k1

since kr + · · ·+ ks + 1 ≤ n+ 1− i ≤ n and 1 ≤ n+ 1− j ≤ kr + · · ·+ ks+1. □

This map is so ubiquitous that we will introduce a notation

X⊙ := JXtJ.

Note that it actually corresponds to mirroring the matrix X along its secondary diagonal.
Also, for a parabolic algebra A ⊆Mn we denote by A⊙ ⊆Mn the image of A under the map
X 7→ X⊙. Then A⊙ is the parabolic algebra obtained from A by reversing the sizes of the
diagonal blocks.
For 1 ≤ i ≤ n denote

A↔i
k1,...,kr := {X ∈ Ak1,...,kr : XEii = EiiX = 0}.

It is easy to see that this is a subalgebra of A↔i
k1,...,kr

.

Denote by A\i
k1,...,kr

the parabolic algebra obtained from Ak1,...,kr by removing i-th row and

column.
For X ∈ A↔i

k1,...,kr
denote by X♭i ∈ A\i

k1,...,kr
the matrix obtained from X by removing i-th row

and column.X
1,1
(i−1)×(i−1) 0 X1,2

(i−1)×(n−i)

0 0 0

X2,1
(n−i)×(i−1) 0 X2,2

(n−i)×(n−i)


♭i

=

[
X1,1

(i−1)×(i−1) X1,2
(i−1)×(n−i)

X2,1
(n−i)×(i−1) X2,2

(n−i)×(n−i)

]
.

Conversely, for Y ∈ A\i
k1,...,kr

and z ∈ C denote by Y ♯(i,z) ∈ Ak1,...,kr the matrix obtained from

Y by adding i-th row and column as zeroes, except at the position (i, i) which now contains
z. [

Y 1,1
(i−1)×(i−1) Y 1,2

(i−1)×(n−i)

Y 2,1
(n−i)×(i−1) Y 2,2

(n−i)×(n−i)

]♯(i,z)
=

Y
1,1
(i−1)×(i−1) 0 Y 1,2

(i−1)×(n−i)

0 z 0

Y 2,1
(n−i)×(i−1) 0 Y 2,2

(n−i)×(n−i)

 .
Claim 2.1.1. For each 1 ≤ i ≤ n the maps

·♯(i,0) : A\i
k1,...,kr

→ A↔i
k1,...,kr

and
·♭i : A↔i

k1,...,kr → A\i
k1,...,kr

are algebra isomorphisms.

Proof. It is clear that the maps are linear and inverses of each other. It suffices to show that
·♯(i,0) is multiplicative, which follows directly from block-matrix multiplication. □
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Denote ∆ = diag(1, . . . , n) ∈ Ak1,...,kr . We also introduce this notation: for A ∈ Ak1,...,kr of
the form (1.2), we write di(A) = (X11, . . . , Xrr) extracting the diagonal blocks of A.

Lemma 2.2. Let A ∈ Mn be a matrix satisfying A ↔ Ess for some 1 ≤ s ≤ n and denote
its eigenvalues by λ1, . . . , λs−1, ass, λs+1, . . . , λn. Then there exists a unitary matrix U ∈ Mn

and Θ ∈ Tn such that U ↔ Ess, Uss = 1, A = UΘU∗ and the diagonal of Θ is precisely
λ1, . . . , λs−1, ass, λs+1, . . . , λn.

Proof. A can be written as

A =

A(s−1)×(s−1) 0(s−1)×1 A(s−1)×(n−s)

01×(s−1) ass 01×(n−s)

A(n−s)×(s−1) 0(n−s)×1 A(n−s)×(n−s)


so by the Schur decomposition there exist a unitary matrix U ∈Mn−1 and an upper-triangular
matrix Θ ∈ Tn−1 with the diagonal λ1, . . . , λs−1, λs+1, . . . , λn such that

A♭s = UΘU∗.

By block-matrix multiplication we see that the desired decomposition is achieved as

A = U ♯(s,1)Θ♯(s,ass)(U∗)♯(s,1) = U ♯(s,1)Θ♯(s,ass)(U ♯(s,1))∗.

□

Lemma 2.3. Let A ∈ Ak1,...,kr such that di(A) = (X1, . . . , Xr). Suppose that A has eigen-
values λ1, . . . , λn listed such that λk1+···+kj−1+1, . . . , λk1+···+kj are eigenvalues of Xj for all

1 ≤ j ≤ n. Then there exists T ∈ A×
k1,...,kr

and Θ ∈ Tn such that A = TΘT−1 and the

diagonal of Θ is precisely λ1, . . . , λn.
Furthermore, if A ↔ Ess for some 1 ≤ s ≤ n, then T can be chosen to satisfy T ↔ Ess and
Tss = 1.

Proof. Suppose di(A) = (X1, . . . , Xr). By Claim 2.2, for every 1 ≤ j ≤ r we can pick a
(unitary) matrix Sj ∈M×

kj
such that SjXjS

−1
j ∈ Tkj . Then

diag(S1, . . . , Sr)Adiag(S1, . . . , Sr)
−1 ∈ Tn

since the blocks on the diagonal of this matrix are all upper triangular.
The second claim follows from second statement of Claim 2.2 applied on Xk. □

Lemma 2.4. Let A ∈ Ak1,...,kr such that di(A) = (X1, . . . , Xr). Suppose that A has distinct
eigenvalues λ1, . . . , λn listed such that λk1+···+kj−1+1, . . . , λk1+···+kj are eigenvalues of Xj for

all 1 ≤ j ≤ n. Then there exists T ∈ A×
k1,...,kr

such that TAT−1 = diag(λ1, . . . , λn).

Furthermore, if A ↔ Ess for some 1 ≤ s ≤ n, then T can be chosen to satisfy T ↔ Ess and
Tss = 1.

Proof. We prove the claim by induction on n. For n = 1 the statement is clear so suppose
that the claim is true for n − 1. First by Claim 2.3, there exists T ∈ A×

k1,...,kr
such that

TAT−1 ∈ Tn. We can write

TAT−1 =

[
λ1 B
0 C

]
for some matrices B ∈ M1,n−1 and C ∈ Tn−1. By the induction hypothesis, there exists
Q ∈ T ×

n−1 such that QCQ−1 = diag(λ2, . . . , λn). Now we have[
1 0
0 Q

]
TAT−1

[
1 0
0 Q−1

]
=

[
λ1 BQ−1

0 diag(λ2, . . . , λn)

]
.
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It remains to diagonalize the latter matrix. It is not hard to verify that

R = I +

n∑
j=2

(BQ−1)1(j−1)

λ1 − λj
E1j ∈ T ×

n

satisfies

R

[
λ1 BQ−1

0 diag(λ2, . . . , λn)

]
R−1 = diag(λ1, . . . , λn).

Therefore the matrix R diag(1, Q)T ∈ A×
k1,...,kr

satisfies

(R diag(1, Q)T )A(R diag(1, Q)T )−1 = diag(λ1, . . . , λn).

Now we prove the second claim. First assume that 2 ≤ s ≤ n. Firstly, T can be chosen
to satisfy T ↔ Ess and Tss = 1 by the second claim of Claim 2.3. Then TAT−1 ↔ Ess

as well. By the induction hypothesis, the matrix Q above can by chosen such that Q ↔
E(s−1)(s−1) and Q(s−1)(s−1) = 1. Then Q−1 satisfies the same properties so it is easy to see

that (BQ−1)1(s−1) = B1(s−1) = 0. Therefore R ↔ Ess and Rss = 1 as well. We conclude
that the matrix R diag(1, Q)T satisfies the two required properties as a product of three such
matrices.
Now assume s = 1. Then diag(1, Q) ↔ E11 and diag(1, Q)11 = 1 while the rest of the
argument is the same. □

3. Parabolic subalgebras and their Jordan embeddings

First we state a few basic properties of Jordan homomorphisms, proofs of which are elementary
and can be found in [18]. For an algebra A, as usual, we denote the commutator of a, b ∈ A
as [a, b] = ab− ba.

Lemma 3.1. Let ϕ : A → B be a Jordan homomorphism between algebras A and B. We
have:

(a) ϕ(aba) = ϕ(a)ϕ(b)ϕ(a) for all a, b ∈ A.
(b) ϕ(abc+ cba) = ϕ(a)ϕ(b)ϕ(c) + ϕ(c)ϕ(b)ϕ(a) for all a, b, c ∈ A.
(c) ϕ([[a, b], c]) = [[ϕ(a), ϕ(b)], ϕ(c)], for all a, b, c ∈ A.
(d) ϕ([a, b]2) = [ϕ(a), ϕ(b)]2 for all a, b ∈ A.
(e) ϕ(ak) = ϕ(a)k for all a ∈ A and k ∈ N. In particular, ϕ(p(a)) = p(ϕ(a)) for all a ∈ A

and polynomials p ∈ C[x] such that p(0) = 0.
(f) For every idempotent p ∈ A and a ∈ A which satisfies [p, a] = 0 we have ϕ(pa) =

ϕ(p)ϕ(a) = ϕ(a)ϕ(p).

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3.

Claim 1.3.1. Without loss of generality we can assume that ϕ(D) = D for all D ∈ Dn.

Proof. For 1 ≤ i ̸= j ≤ n we have Eii ↔ Ejj so by Lemma 3.1 (g) it follows

0 = ϕ(EiiEjj) = ϕ(Eii)ϕ(Ejj) = ϕ(Ejj)ϕ(Eii).

We conclude that ϕ(E11), . . . , ϕ(Enn) is a family of mutually orthogonal nonzero idempotents.
Therefore, there exists S ∈M×

n such that

ϕ(Ekk) = SEkkS
−1, 1 ≤ k ≤ n.
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By passing to the Jordan monomorphism Sϕ(·)S−1, without loss of generality we can assume
that

ϕ(Ekk) = Ekk, 1 ≤ k ≤ n.

The claim follows by linearity. □

Claim 1.3.2. For every non-diagonal matrix unit Eij ∈ A there exist scalars αij , βij ∈ C,
exactly one of which is zero, such that ϕ(Eij) = αijEij + βijEji.

Proof. By Lemma 3.1 (b), we have

ϕ(Eij) = ϕ(EiiEijEjj + EjjEijEii) = Eiiϕ(Eij)Ejj + Ejjϕ(Eij)Eii

= ϕ(Eij)ijEij + ϕ(Eij)jiEji.

Therefore, the only possible nonzero elements are on the positions (i, j) and (j, i) so there
exist scalars αij , βij ∈ C such that

ϕ(Eij) = αijEij + βijEji.

Furthermore, we have

0 = ϕ(E2
ij) = ϕ(Eij)

2 = αijβij(Eii + Ejj)

so exactly one of αij and βij is equal to zero 0 (not both because of injectivity). □

Claim 1.3.3. (a) If Eij , Eik ∈ A for some distinct indices 1 ≤ i, j, k ≤ n, then either αij =
αik = 0, or βij = βik = 0.

(b) If Eij , Ekj ∈ A for some distinct indices 1 ≤ i, j, k ≤ n, then either αij = αkj = 0, or
βij = βkj = 0.

Proof. (a) Suppose that ϕ(Eij) = αijEij and ϕ(Eik) = βikEki. We have

0 = ϕ(EijEik + EikEij) = ϕ(Eij)ϕ(Eik) + ϕ(Eik)ϕ(Eij) = αijβik(EijEki + EkiEij)

= αijβik︸ ︷︷ ︸
̸=0

Ekj ,

which is a contradiction.
(b) Analogous as (a).

□

Claim 1.3.4. Either all αij ̸= 0, or all βij ̸= 0.

Proof. By Claim 1.3.3 the same option holds throughout the last column, for example assume
α1n, . . . , α(n−1)n ̸= 0.
Now suppose Eij ∈ A is a non-diagonal matrix unit such that i ̸= n. Then Eij and Ein ∈ A
are in the i-th row so we conclude αij ̸= 0.
Finally, suppose Enj ∈ A is a non-diagonal matrix unit. Then E1j ∈ A so by the previous
argument it follows αnj ̸= 0. This handles all matrix units in A. □

Without loss of generality we can assume ϕ(Eij) = αijEij for all matrix units Eij ∈ A,
otherwise we pass to the map ϕ(·)t.
Claim 1.3.5. For all 1 ≤ i, j, k ≤ n such that Eij , Ejk ∈ A we have αijαjk = αik.

Proof. If Eik = Ejj , then the equality αijαjk = αik holds trivially. Otherwise, we have

αikEik + δikEjj = ϕ(Eik + δikEjj) = ϕ(EijEjk + EjkEij) = ϕ(Eij)ϕ(Ejk) + ϕ(Ejk)ϕ(Eij)

= αijαjkEijEjk + αjkαijEjkEij = αijαjkEik + δikαjkαijEjj

so by comparing coefficients of Eik we conclude αijαjk = αik. □
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Claim 1.3.6. There exists T ∈M×
n such that ϕ(X) = TXT−1 for all X ∈ A.

Proof. For all matrix units Eij ∈ A we have

ϕ(Eij) = αijEij =
α1j

α1i

Claim 1.3.5
= diag(α11, . . . , α1n)

−1Eij diag(α11, . . . , α1n).

Since A is spanned by its matrix units, by linearity it follows

ϕ(X) = T−1XT, for all X ∈ A
where T = diag(α11, . . . , α1n) ∈M×

n . □

□

Note that Ak1,...,kp ⊆ Al1,...,lq if and only if there exist 1 ≤ r1 < . . . < rq = p such that

r1∑
j=1

kj = l1,

r2∑
j=r1+1

kj = l2, , . . . , ,

rq∑
j=rq−1+1

kj = lq.

Corollary 3.2. Let A and B be parabolic subalgebras of Mn. Suppose that ϕ : A → B is a
Jordan embedding. Then one of the following is true:

(a) A ⊆ B and there exists T ∈ B× such that ϕ(X) = TXT−1 for all X ∈ A,
(b) A⊙ ⊆ B and there exists T ∈ B×J such that ϕ(X) = TXtT−1 for all X ∈ A.

Proof. Denote A = Ak1,...,kp and B = Al1,...,lq . By Theorem 1.3, there exists T ∈ Mn and

◦ ∈ {id, ·t} such that ϕ(X) = TX◦T−1 for all X ∈ A.
Suppose first that ◦ = id and let us show A ⊆ B. We will prove the claim by induction on n.
For n = 1, the only possible parabolic algebra is A1 =M1 so the statement is clear.
Suppose that n ≥ 2 and that the statement holds for all parabolic subalgebras of Mj for
1 ≤ j ≤ n− 1.

Claim 3.2.1. There exists a a permutation σ ∈ Sn such that ϕ(D) = σ(D) for all D ∈ Dn.

Proof. By Theorem 1.3, there exists T ∈M×
n such that ϕ(·) = T · T−1.

The matrix ϕ(∆) = T∆T−1 ∈ Al1,...,lq has eigenvalues 1, . . . , n so by Lemma 2.4 there exists

S ∈ A×
l1,...,lq

and a permutation σ ∈ Sn such that Sϕ(∆)S−1 = σ(∆). We can pass to the map

Sϕ(·)S−1 to assume without loss of generality that ϕ(∆) = σ(∆). For every 1 ≤ i ≤ n the
matrix ϕ(Eii) = TEiiT

−1 is a rank-one idempotent which satisfies

Eii ↔ ∆ =⇒ ϕ(Eii) ↔ ϕ(∆) = σ(∆)

so it is diagonal. Therefore, by injectivity, there exists a permutation τ ∈ Sn such that
ϕ(Eii) = TEiiT

−1 = Eτ(i)τ(i) for all 1 ≤ i ≤ n. But now we have

n∑
k=1

kEσ(k)σ(k) = σ(∆) = ϕ(∆) = ϕ

(
n∑

k=1

kEkk

)
=

n∑
k=1

kEτ(k)τ(k)

which implies τ = σ. The claim now follows by linearity. □

Claim 3.2.2. For each non-diagonal matrix unit Eij ∈ Ak1,...,kp there exists cij ∈ C× such
that ϕ(Eij) = cijEσ(i)σ(j).

Proof. We have

ϕ(Eij) = ϕ(EiiEijEjj) = ϕ(Eii)ϕ(Eij)ϕ(Ejj) = Eσ(i)σ(i)ϕ(Eij)Eσ(j)σ(j),

so ϕ(Eij) is nonzero only in the position (σ(i), σ(j)) □
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Claim 3.2.3. We have σ({1, . . . , k1}) ⊆ {1, . . . , l1}. In particular k1 ≤ l1.

Proof. By Claim 3.2.2, for each 1 ≤ i ≤ k1, the images of the matrix units Ei1, . . . , Ein ∈
Ak1,...,kp by injectivity occupy n distinct positions in the σ(i)-th row. In order for them to be
in Al1,...,lq , it has to be 1 ≤ σ(i) ≤ l1. □

Claim 3.2.4. For every 1 ≤ i ≤ n we have

ϕ(A↔i
k1,...,kp) ⊆ A↔σ(i)

l1,...,lq
.

Proof. For each X ∈ A↔i
k1,...,kp

we have

XEii = EiiX = 0

so applying ϕ and (3.2.1) yields

ϕ(X)Eσ(i)σ(i) = Eσ(i)σ(i)ϕ(X) = 0

which proves the claim. □

Claim 3.2.5. For every 1 ≤ i ≤ n, the map ϕi : A\i
k1,...,kp

→ A\σ(i)
l1,...,lq

defined as

ϕi(X) = ϕ(X♯(i,0))♭σ(i)

is an algebra monomorphism.

Proof. Follows from Claim 2.1.1. □

Consider ϕ1. Since 1 ≤ σ(1) ≤ l1, this is a map

ϕ1 : A\1 → B\σ(1)

which is a monomorphism of parabolic subalgebras of Mn−1. By the inductive hypothesis it
follows A\1 ⊆ B\σ(1). Since 1 ≤ σ(1) ≤ l1, we have B\σ(1) = B\1 and therefore

A =



∗ ∗ ∗ · · · ∗
...
∗
0
...
0

A\1



k1

⊆



∗ ∗ ∗ · · · ∗
...
∗
0
...
0

B\1



l1

= B.

This shows A ⊆ B.

Claim 3.2.6. We have T ∈ B×.

Proof. Denote r1, . . . , rq as in the paragraph preceding this corollary. Suppose that some
0 ≤ m ≤ q − 1 satisfies T ∈ A×

l1,...,lm,n−(l1+···+lm) (for m = 0 this is merely A×
0,n = M×

n ). We

claim that the same holds for m + 1, i.e. T ∈ A×
l1,...,lm+1,n−(l1+···+lm+1)

. To be more precise,
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we need to verify that all the ∗’s exactly below the lm+1 × lm+1 block are zero:

∗ · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0
. . .

... · · ·
...

...
...

...
...

...
...

...

0 · · · 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

...
. . .

...
... 0 · · · 0

...
...

...
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
. . .

... ∗ · · · ∗ . . .
...

...
...

...
. . .

...
...

...
. . .

... ∗ · · · ∗ ∗
...

. . .
...

...
...

. . .
...

...
. . .

...
...

0 · · · 0 0 0 · · · 0 ∗ · · · ∗ ∗

l1 × l1

lm × lm

lm+1 × lm+1

lq × lq


In symbols, this means
(3.1)
Tqt = 0, for all l1+· · ·+lm+lm+1+1 ≤ q ≤ n, l1+· · ·+lm+1 ≤ t ≤ l1+· · ·+lm+1.

For every

• l1 + · · ·+ lm + lm+1 + 1 ≤ q ≤ n,
• rm ≤ g ≤ rm+1 − 1,
• l1 + · · ·+ lm +

∑g
u=rm+1 ku + 1 ≤ j ≤ n,

• l1 + · · ·+ lm + 1 ≤ s ≤ l1 + · · ·+ lm+1,

• l1 + · · ·+ lm +
∑g

u=rm+1 ku + 1 ≤ t ≤ l1 + · · ·+ lm +
∑g+1

u=rm+1 ku

we have

Etj ∈ Ak1,...,kp =⇒ TEtjT
−1 ∈ Al1,...,lq =⇒ 0 = (TEtjT

−1)qs = Tqt(T
−1)js.

Fix q, t and suppose that (T−1)js = 0 for all such j, s. Then we would have di(T−1) =
(X1, . . . , Xm, Xm+1) whereXm+1 ∈ Alm+1,lm+2+···+lq singular matrix since its upper left lm+1×
lm+1 block’s last kg+1 + · · ·+ krm+1 rows are zero. This would make T−1 singular, which is a
contradiction.
Therefore, (T−1)js ̸= 0 for at least one such pair of indices j, s. Consequently, Tqt = 0,
verifying (3.1).
The claim follows for m = q − 1. □

Suppose now that ◦ = ·t. We have (TJ)(JXtJ)(TJ)−1 = TXtT−1 ∈ B for all X ∈ A which
implies (TJ)X(TJ)−1 ∈ B for all X ∈ A⊙. From the first part of the proof we get A⊙ ⊆ B
and TJ ∈ B×, which is equivalent to T ∈ B×J .

□

Corollary 3.3. Let Ak1,...,kp and Al1,...,lq be parabolic subalgebras of Mn.

(a) Ak1,...,kp and Al1,...,lq are algebra-isomorphic if and only if (k1, . . . , kp) = (l1, . . . , lq).
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(b) Ak1,...,kp and Al1,...,lq are algebra-antiisomorphic if and only if (k1, . . . , kp) = (lq, . . . , l1).
(c) Ak1,...,kp and Al1,...,lq are Jordan-isomorphic if and only if (k1, . . . , kp) ∈ {(lq, . . . , l1), (lq, . . . , l1)}.

Proof. Follows directly from Corollary 3.2. □

4. Proof of the main result

We now proceed with the proof of our main result, namely Theorem 1.4. We begin with the
following well-known fact:

Remark 4.0.1. Consider the map k· :Mn → C≤n[x] which maps a matrix A to its character-
istic polynomial kA. Then this map is continuous with respect to the standard topologies on
Mn and C≤n[x] as finite-dimensional complex vector spaces. It is not difficult to check that a
sequence of polynomials (pj)

∞
j=1 in C≤n[x] converges to p ∈ C≤n[x] (in the standard topology

of C≤n[x]) if and only if pj → p pointwise.
Suppose Aj → A in Mn. Then for each fixed x ∈ C we have

kAj (x) = det(Aj − xI)
j→∞−−−→ det(A− xI) = kA(x)

by the continuity of the determinant det :Mn → C. It follows kAj → kA pointwise and hence
in C≤n[x] as well.

Proof of Theorem 1.4. Let ϕ : Ak1,...,kr → Mn be a continuous injective map which preserves
commutativity and spectrum.

Claim 1.4.1. ϕ preserves characteristic polynomial.

Proof. ϕ clearly preserves characteristic polynomial on the set of all matrices in Ak1,...,kr with
n distinct eigenvalues. As a consequence of Claim 2.3, this set is dense in Ak1,...,kr . The claim
now follows from the continuity of the characteristic polynomial. □

Claim 1.4.2. Without loss of generality we can assume ϕ(∆) = ∆.

Proof. By Claim 1.4.1, the matrix ϕ(∆) ∈ Mn is diagonalizable with eigenvalues 1, . . . , n so
there exists S ∈M×

n such that ϕ(∆) = S∆S−1. Now we pass to the map S−1ϕ(·)S. □

1.1. Diagonal matrices.

Claim 1.4.3. We have ϕ(Dn) ⊆ Dn, i.e. ϕ maps diagonal matrices to diagonal matrices.
Moreover, if D ∈ Dn, then ϕ(D) is a permutation of D.

Proof. For any D ∈ Dn we have D ↔ ∆ =⇒ ϕ(D) ↔ ϕ(∆) = ∆ so ϕ(D) ∈ Dn. The second
part follows from Claim 1.4.1. □

Claim 1.4.4. We have ϕ(D) = D for all D ∈ Dn.

Proof. This is a standard argument from [28, Lemma 2.1]. For completeness we include the
proof. Let D = diag(λ1, . . . , λn) ∈ Dn be such that all the eigenvalues are distinct. Then we
can choose continuous paths fk : [0, 1] → C, 1 ≤ k ≤ n from k to λk such that for all t ∈ [0, 1]
the values f1(t), . . . , fn(t) are all distinct. Indeed, for 1 ≤ k ≤ n we can choose a path

αk : [0, 1] → (C \ {1, . . . , n, λ1, . . . , λn}) ∪ {k, λk}
from k to λk and then define

fk(t) =


k, if t ∈

[
0, k−1

n

]
αk

(
n
(
t− k−1

n

))
, if t ∈

[
k−1
n , kn

]
λk, if t ∈

[
k
n , 1
]
.
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Denote

d := min
t∈[0,1]

{
|fi(t)− fj(t)| : 1 ≤ i, j ≤ n

}
> 0.

Notice that the set

S = {t ∈ [0, 1] : ϕ(diag(f1(t), . . . , fn(t))) ̸= diag(f1(t), . . . , fn(t))}
= {t ∈ [0, 1] : ∥ϕ(diag(f1(t), . . . , fn(t)))− diag(f1(t), . . . , fn(t))∥∞ ≥ d}

is both open and closed in [0, 1]. Since 0 /∈ S, by the connectedness of [0, 1] it follows that
S = ∅.
In particular for t = 1 we get

ϕ(diag(λ1, . . . , λn)) = ϕ(diag(f1(t), . . . , fn(t))) = diag(f1(t), . . . , fn(t))

= diag(λ1, . . . , λn).

The claim follows by density. □

Claim 1.4.5. Let S ∈ A×
k1,...,kr

be arbitrary. Then there exists T ∈M×
n such that

ϕ(SDS−1) = TDT−1, for all diagonal matrices D ∈ Dn.

Proof. The matrix ϕ(S∆S−1) is similar to ∆ so there exists T ∈M×
n such that ϕ(S∆S−1) =

T∆T−1. The map Ak1,...,kr → Mn, T
−1ϕ(S · S−1)T now satisfies all the assumptions as ϕ,

including ∆ 7→ ∆ so by Claim 1.4.4 the claim follows. □

Claim 1.4.6. ϕ is a homogeneous map.

Proof. By density it suffices to show that ϕ is homogeneous on the set of all matrices in
Ak1,...,kr with n distinct eigenvalues. This follows directly from Claim 1.4.5. □

1.2. Base step. Now we prove Theorem 1.4 completely for n = 3. It suffices to prove the
theorem for A ∈ {A1,2,A1,1,1}. Indeed, the M3 case is covered by Theorem 1.1, while if
ϕ : A2,1 →M3 is a continuous injective commutativity and spectrum preserving map, then

X 7→ ϕ(X⊙) : A1,2 →M3

is also such a map so the claim follows from the A1,2 case.

Claim 1.4.7. Without loss of generality we can assume that there exist constants cij ∈ C×

such that

ϕ(Eij) = cijEij , for all matrix units Eij ∈ A.

Proof. We have E12 ↔ E33 so by Claim 1.4.4 it follows ϕ(E12) ↔ ϕ(E33) = E33. By Claim
1.4.1 and injectivity, the matrix ϕ(E12) is a nonzero nilpotent so we conclude

ϕ(E12) =

 ac a2 0
−c2 −ac 0
0 0 0


for some a, c ∈ C not both equal to 0. Analogously we get

ϕ(E13) =

 bd 0 b2

0 0 0
−d2 0 −bd


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for some b, d ∈ C not both equal to 0. Since E12 ↔ E13 we have abcd 0 ab2c
−bc2d 0 −b2c2

0 0 0

 = ϕ(E12)ϕ(E13) = ϕ(E13)ϕ(E12) =

 abcd a2bd 0
0 0 0

−acd2 −a2d2 0

 .
If a ̸= 0, then −a2d2 = 0 implies d = 0 so b ̸= 0. Now ab2c = 0 implies c = 0 and therefore

ϕ(E12) = a2E12, ϕ(E13) = b2E13.

If however c ̸= 0, then −b2c2 = 0 implies b = 0 so d ̸= 0. Now a2bd = 0 implies a = 0 and
therefore

ϕ(E12) = −c2E21, ϕ(E13) = −d2E31.

Without loss of generality we can suppose that we are in the first case, as otherwise we can
pass to the map ϕ(·)t.
As above we obtain

ϕ(E23) =

0 0 0
0 ef e2

0 −f2 −ef


for some e, f ∈ C not both equal to 0. By using E23 ↔ E13 it follows that f = 0 and therefore
ϕ(E23) = e2E23.
This settles the matter for A = T3. In the case of A = A1,3, similarly as above using
E32 ↔ E11, E12 we obtain ϕ(E32) = c32E32 for some c32 ∈ C×. □

Claim 1.4.8. Without loss of generality we can assume that c12 = c13 = 1.

Proof. We can consider the map

diag(1, c12, c13)ϕ(·) diag(1, c12, c13)−1.

Now we have

diag(1, c12, c13)ϕ(E1j) diag(1, c12, c13)
−1 = E1j , 2 ≤ j ≤ 3.

□

Claim 1.4.9. ϕ acts as identity on all matrices of the form∗ ∗ ∗
0 0 0
0 0 0

 .
Proof. We introduce

R(α, x, y) =

α x y
0 0 0
0 0 0

 .
If we denote

S(u, v) =

1 −u −v
0 1 0
0 0 1

 ,
we have S(u, v)−1 = S(−u,−v) so by assuming α ̸= 0 we obtain

R(α, x, y) = αS
(x
α
,
y

α

)
E11S

(x
α
,
y

α

)−1
,
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A1(α, x) :=

0 −x 0
0 α 0
0 0 0

 = αS
(x
α
,
y

α

)
E22S

(x
α
,
y

α

)−1
,

A2(α, y) :=

0 0 −y
0 0 0
0 0 α

 = αS
(x
α
,
y

α

)
E33S

(x
α
,
y

α

)−1
.

We have

A1(α, x) ↔ E13, E33, A2(α, y) ↔ E12, E22

and therefore

ϕ(A1(α, x)) ↔ E13, E33, ϕ(A2(α, y)) ↔ E12, E22

which implies

ϕ(A1(α, x)) =

a b 0
0 c 0
0 0 a

 , ϕ(A2(α, y)) =

e 0 g
0 e 0
0 0 f

 .
By Claim 1.4.1, both diagonals consist of α, 0, 0 in some order so there exists continuous
functions a12, a13 : C× × C → C such that

ϕ(A1(α, x)) =

0 −a12(α, x) 0
0 α 0
0 0 0

 = A1(α, a12(α, x))

= αS

(
a12(α, x)

α
,
a13(α, y)

α

)
E22S

(
a12(α, x)

α
,
a13(α, y)

α

)−1

,

ϕ(A2(α, y)) =

0 0 −a13(α, y)
0 0 0
0 0 α

 = A2(α, a13(α, y))

= αS

(
a12(α, x)

α
,
a13(α, y)

α

)
E33S

(
a12(α, x)

α
,
a13(α, y)

α

)−1

.

Furthermore, we have

A1(α, x)
α→0−−−→ A1(0, x) =⇒ ϕ(A1(α, x))

α→0−−−→ ϕ(A1(0, x)) = ϕ(−xE12) = −xE12

but simultaneously also

ϕ(A1(α, x)) = A1(α, a12(α, x)) = αE22 − a12(α, x)E12

which implies a12(α, x)
α→0−−−→ x. Therefore, we can define a12(0, x) = x to obtain a continuous

function a12 : C2 → C which satisfies ϕ(A1(α, x)) = αE22 − a12(α, x)E12 for all α, x ∈ C.
Analogously we define a13(0, y) = y and by doing so obtain a continuous function a13 : C2 → C
which for all α, y ∈ C satisfies ϕ(A2(α, y)) = αE33 − a13(α, y)E13.
By E11 ↔ E22, E33, when α ̸= 0 we also have

R(α, x, y) ↔ A1(α, x), A2(α, y) =⇒ ϕ(R(α, x, y)) ↔ A1(α, a12(α, x)), A2(α, a13(α, y))

which implies

S

(
a12(α, x)

α
,
a13(α, y)

α

)−1

ϕ(R(α, x, y))S

(
a12(α, x)

α
,
a13(α, y)

α

)
↔ E22, E33
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so on the left hand side is a diagonal matrix D(α, x, y). Therefore we have

ϕ(R(α, x, y)) = S

(
a12(α, x)

α
,
a13(α, y)

α

)
D(α, x, y)S

(
a12(α, x)

α
,
a13(α, y)

α

)−1

.

The diagonal of D(α, x, y) consists of α, 0, 0 in some order so the only options are

D(α, x, y) ∈ {αE11, αE22, αE33}.
Furthermore, the diagonal elements are continuous in α, x, y.
Fix α ̸= 0. Then D(α, ·, ·)11, D(α, ·, ·)22, D(α, ·, ·)33 : C2 → {0, α} are continuous functions
and hence constant. Therefore, D(α, x, y) is constant with respect to x, y ∈ C. Supposing
D(α, x, y) = αE22, in particular for x = y = 0 we would obtain

αE11 = ϕ(αE11) = ϕ(R(α, 0, 0))

= αS

(
a12(α, 0)

α
,
a13(α, 0)

α

)
E22S

(
a12(α, 0)

α
,
a13(α, 0)

α

)−1

= A1(α, a12(α, 0)) = ϕ(A1(α, 0)) = ϕ(αE22) = αE22,

which is a contradiction. Analogously D(α, x, y) = αE33 leads to a contradiction so we
conclude that D(α, x, y) = αE11 for all x, y ∈ C. It follows

ϕ(R(α, x, y)) = αS

(
a12(α, x)

α
,
a13(α, y)

α

)
E11S

(
a12(α, x)

α
,
a13(α, y)

α

)−1

= R(α, a12(α, x), a13(α, y))

for all x, y ∈ C and α ̸= 0. In particular we have

ϕ(R(0, x, y)) = lim
α→0

ϕ(R(α, x, y)) = lim
α→0

R(α, a12(α, x), a13(α, y)) = R(0, a12(0, x), a13(0, y))

= R(0, x, y).

We also consider the matrix

A3(x, y) =

0 0 0
0 0 −y
0 0 x


We have A3(x, y) ↔ E11, E21 and therefore

ϕ(A3(x, y)) =

a 0 0
0 a b
0 0 c


whose diagonal consists of x, 0, 0 in some order. We conclude that there exists a continuous
function a23 : C2 → C which for all x, y ∈ C satisfies

ϕ(A3(x, y)) =

0 0 0
0 0 −a23(x, y)
0 0 x

 = A3(x, a23(x, y)).

We have R(α, x, y) ↔ A3(x, y) and therefore ϕ(R(α, x, y)) ↔ ϕ(A3(x, y)) meaningα a12(α, x) a13(α, y)
0 0 0
0 0 0

0 0 0
0 0 −a23(x, y)
0 0 x

 =

0 0 0
0 0 −a23(x, y)
0 0 x

α a12(α, x) a13(α, y)
0 0 0
0 0 0


which immediately yields the following identity:

a12(α, x)a23(x, y)− a13(α, y)x = 0.
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Letting α→ 0 it reduces to

xa23(x, y)− yx = a12(0, x)a23(x, y)− a13(0, y)x = 0

so we conclude a23(x, y) = y for all x, y ∈ C. Consequently
ϕ(A3(x, y)) = A3(x, y).

The above identity now states

a12(α, x)y − a13(α, y)x = 0

so for all x, y ∈ C× we have
a13(α, y)

y
=
a12(α, x)

x
.

The left hand side is independent of x, and the right hand side is independent of y so both
sides are in fact equal to some constant C(α) ∈ C.
For all α, x, y ∈ C× the homogeneity of ϕ (Claim 1.4.6) implies

ϕ(R(α, x, y)) = αϕ
(
R
(
1,
x

α
,
y

α

))
= αR

(
1, C(1)

x

α
,C(1)

y

α

)
= R (α,C(1)x,C(1)y) = R(α,C(1)x,C(1)y).

We have
ϕ(R(α, x, y))

α→0−−−→ ϕ(R(0, x, y)) = R(0, x, y),

and on the other hand

ϕ(R(α, x, y)) = R(α,C(1)x,C(1)y)
α→0−−−→ R(0, C(1)x,C(1)y)

which implies C(1) = 1.
Therefore, for all α, x, y ∈ C× we have

ϕ(R(α, x, y)) = R(α, x, y)

so the continuity of ϕ implies that the above identity holds for all α, x, y ∈ C.
As a byproduct of relations a12(α, x) = x and a13(α, y) = y we also obtain

ϕ(A1(α, x)) = A1(α, x), ϕ(A2(α, y)) = A2(α, y).

□

Claim 1.4.10. ϕ acts as identity on all matrices of the form0 0 ∗
0 0 ∗
0 0 ∗

 .
Proof. Denote

V (x, y, z) =

0 0 x
0 0 y
0 0 z

 .
Consider the map

ψ : T3 →M3, ψ(X) = ϕ(X⊙)⊙

which, by Claim 2.1, satisfies all assumptions as ϕ, including ∆ 7→ ∆. Notice that V (x, y, z) =
R(z, y, x)⊙ so we have

ϕ(V (x, y, z))⊙ = ψ(R(z, y, x))
Claim 1.4.9

= R(z, y, x)

implying ϕ(V (x, y, z)) = V (x, y, z).
□
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Claim 1.4.11. We have

ϕ

0 0 0
0 ∗ ∗
0 ∗ ∗

 =

0 0 0
0 ∗ ∗
0 ∗ ∗

 .
Proof. By commuting with E11 it is clear that

ϕ

0 0 0
0 ∗ ∗
0 ∗ ∗

 =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 .
Without loss of generality we can assume that the lower right 2×2 block B of the left hand side
matrix is diagonalizable with nonzero distinct eigenvalues λ2, λ3. By Claim 2.4, there exists
T ∈M×

2 or T ×
2 (for concreteness, we can assume the latter) such that TBT−1 = diag(λ2, λ3).

Let γ : [0, 1] → T ×
2 be a path from I to T . Then

[0, 1] → {0, λ2, λ3} : t 7→ ϕ(diag(0, γ(t)Bγ(t)−1))11

is continuous and hence constant. But, by Claim 1.4.4, for t = 1 it is equal to ϕ(diag(0, λ2, λ3))11 =
0 so it is zero for all t ∈ [0, 1]. In particular, for t = 0 the claim follows. □

Claim 1.4.12. ϕ acts as identity on all rank-one matrices in A of the form0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .
Proof. For fixed x = (x1, x2, x3) ∈ C3 and λ2, λ3 ∈ C let A(x, λ2, λ3) ∈ A be the matrix

A(x, λ2, λ3) =
[
0 λ2x λ3x

]
=

0 λ2x1 λ3x1
0 λ2x2 λ3x2
0 λ2x3 λ3x3


columnwise. For v = (v1, v2, v3) ∈ C3 let R(v) be as in Claim 1.4.9. We have

A(x, λ2, λ3)R(v) = 0, R(v)A(x, λ2, λ3) =

0 λ2v
tx λ3v

tx
0 0 0
0 0 0

 .
Therefore, assuming vtx = 0, we have

A(x, λ2, λ3) ↔ R(v) =⇒ ϕ(A(x, λ2, λ3)) ↔ ϕ(R(v))
Claim 1.4.9

= R(v).

If we denote

ϕ(A(x, λ2, λ3)) =
[
S1 S2 S3

]
=

b11 b12 b13
b21 b22 b23
b31 b32 b33

 ,
we have vtS1 vtS2 vtS3

0 0 0
0 0 0

 = R(v)ϕ(A) = ϕ(A)R(v) =

b11vtb21v
t

b31v
t

 .
We can assume v ̸= 0 to immediately obtain b21 = b31 = 0. Now, b11 is an element of the
spectrum of ϕ(A(x, λ2, λ3)), and hence either 0 or TrA(x, λ2, λ3) = λ2x2 + λ3x3.
Consider the map

C → {0, λ2x2 + λ3x3}, t 7→ ϕ(A((t, x2, x3), λ2, λ3))11
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which is continuous and hence constant. By Claim 1.4.11 have 0 7→ 0 and hence x1 7→ 0 as
well. The latter precisely means b11 = ϕ(A(x, λ2, λ3))11 = 0. In particular it follows S1 = 0
and vtS2 = vtS3 = 0. Since v was an arbitrary nonzero vector with the property vtx = 0, it
follows that S2, S3 ∈ span{x}. Therefore let us write

ϕ(A(x, λ2, λ3)) =
[
0 µ2x µ3x

]
= A(x, µ2, µ3)

for some scalars µ2, µ3 ∈ C. Since A(x, λ2, λ3) and ϕ(A(x, λ2, λ3)) are rank-one matrices, by
Claim 1.4.1 it follows

(1.1) λ2x2 + λ3x3 = TrA(x, λ2, λ3) = Trϕ(A(x, λ2, λ3)) = µ2x2 + µ3x3.

Now we additionally assume x1 ̸= 0 and λ2x2 + λ3x3 ̸= 0 (we will remove these assumptions
at the end of the proof).
Notice that0 0 0

0 −λ3x3 λ3x2
0 λ2x3 −λ2x2

A(x, λ2, λ3) = A(x, λ2, λ3)

0 0 0
0 −λ3x3 λ3x2
0 λ2x3 −λ2x2

 = 0

and therefore
(1.2)

ϕ

0 0 0
0 −λ3x3 λ3x2
0 λ2x3 −λ2x2

ϕ(A(x, λ2, λ3)) = ϕ(A(x, λ2, λ3))ϕ

0 0 0
0 −λ3x3 λ3x2
0 λ2x3 −λ2x2

 .

By the above part of the proof, there exist y2, y3 ∈ C such that

ϕ

0 0 0
0 −λ3x3 λ3x2
0 λ2x3 −λ2x2

 = ϕ(A(0,−λ3, λ2), x3,−x2)) = A((0,−λ3, λ2), y3,−y2)

=

0 0 0
0 −λ3y3 λ3y2
0 λ2y3 −λ2y2

 .
Moreover, since −(λ3x3 + λ2x2) ̸= 0, by injectivity it cannot be y2 = y3 = 0. Therefore (1.2)
reduces to0 0 0

0 −λ3y3 λ3y2
0 λ2y3 −λ2y2

0 µ2x1 µ3x1
0 µ2x2 µ3x2
0 µ2x3 µ3x3

 =

0 µ2x1 µ3x1
0 µ2x2 µ3x2
0 µ2x3 µ3x3

0 0 0
0 −λ3y3 λ3y2
0 λ2y3 −λ2y2


which yields 0 0 0

0 ∗ ∗
0 ∗ ∗

 =

0 (λ2µ3 − λ3µ2)x1y3 −(λ2µ3 − λ3µ2)x1y2
0 ∗ ∗
0 ∗ ∗


and consequently λ2µ3 = λ3µ2. Now using (1.1) we obtain

(λ2x2 + λ3x3)µ2 = (λ2µ2)x2 + (λ3µ2)x3 = (λ2µ2)x2 + (λ2µ3)x3 = λ2(µ2x2 + µ3x3)

(1.1)
= λ2(λ2x2 + λ3x3),

(λ2x2 + λ3x3)µ3 = (λ2µ3)x2 + (λ3µ3)x3 = (λ3µ2)x2 + (λ3µ3)x3 = λ3(µ2x2 + µ3x3)

(1.1)
= λ3(λ2x2 + λ3x3)
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and since λ2x2 + λ3x3 ̸= 0 it follows µ2 = λ2 and µ3 = λ3. Therefore ϕ(A(x, λ2, λ3)) =
A(x, λ2, λ3).
This completes the proof for all x = (x1, x2, x3) ∈ C3 and (λ2, λ3) ∈ C2 such that x1 ̸= 0 and
λ2x2+λ3x3 ̸= 0. Since these form a dense set, the claim follows for all x1, x2, x3, λ2, λ3 ∈ C. □

Claim 1.4.13. Let A ∈ A be a matrix of rank one. Then one of the two options holds:

(a)

A =

∗ ∗ ∗
0 0 0
0 0 0

 ,
(b)

A =

0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .
Proof. Assume that A is not supported only in the first row. Then in the second or third
column there exists a nonzero element at the second or third position, and the first column
has to be a multiple of that column. Since the first column has zeroes at the second and third
positions, it follows that it is the zero-multiple of that column, i.e. it is the zero column. □

Claim 1.4.14. ϕ acts as identity on rank-one matrices.

Proof. Follows from Claims 1.4.13, 1.4.9 and 1.4.12. □

Claim 1.4.15. ϕ is the identity map.

Proof. By density, it suffices to prove that ϕ is the identity map on the set of matrices in A
with 3 distinct eigenvalues. Let S ∈ A× be arbitrary. By Claim 1.4.5, there exists T ∈ M×

3
such that

ϕ(SDS−1) = TDT−1, for all diagonal matrices D ∈ D3.

By Claim 1.4.14 we also have

SEjjS
−1 = ϕ(SEjjS

−1) = TEjjT
−1, 1 ≤ j ≤ 3

so by linearity it must be TDT−1 = SDS−1 and consequently

ϕ(SDS−1) = TDT−1 = SDS−1

for all diagonal matrices D ∈ D3. This proves the claim. □

1.3. Inductive step.

Claim 1.4.16. Let 1 ≤ s ≤ n and let A ∈ Ak1,...,kr be a matrix with s-th row and s-th column
equal to zero, allowing perhaps that Ass ̸= 0. Then ϕ(A) has the same property:

ϕ

AI
(s−1)×(s−1) 0 AII

(s−1)×(n−s)

0 ∗1×1 0
AIII

(n−s)×(s−1) 0 AIV
(n−s)×(n−s)

 =

∗(s−1)×(s−1) 0 ∗(s−1)×(n−s)

0 ∗1×1 0
∗(n−s)×(s−1) 0 ∗(n−s)×(n−s)

 .
Proof. We have

A↔ Ess =⇒ ϕ(A) ↔ ϕ(Ess) = Ess =⇒ A =

∗(s−1)×(s−1) 0 ∗(s−1)×(n−s)

0 ∗1×1 0
∗(n−s)×(s−1) 0 ∗(n−s)×(n−s)

 .
□
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Claim 1.4.17. Let 1 ≤ s ≤ n and let D = diag(d1, . . . , dn) ∈ Dn be a diagonal matrix. Then
for all R ∈ A×

k1,...,kr
, R↔ Ess, Rss = 1 we have

ϕ(RDR−1) =

∗(s−1)×(s−1) 0 ∗(s−1)×(n−s)

0 ds 0
∗(n−s)×(s−1) 0 ∗(n−s)×(n−s)

 .
Proof. By Claim 1.4.16 it only remains to prove that the element at the position (s, s) is equal
to ds, independently of R. To this end, note that the map given by

(A\s
k1,...,kr

)× → σ(D), R 7→ ϕ
(
R♯(s,1)D(R♯(s,1))−1

)
ss

is continuous and hence constant and equal to its value in the identity I. □

Claim 1.4.18. Let 1 ≤ s ≤ n and let A ∈ Ak1,...,kr be a matrix with s-th row and s-th column
equal to zero. Then ϕ(A) has the same property.

Proof. We already know that ϕ(A) ↔ Ess (Claim 1.4.16), so it remains to show that ϕ(A)ss =
0. By density, it suffices to prove the claim for matrices A with n distinct eigenvalues. Hence,
Claim 2.4 implies that there exists R ∈ A×

k1,...,kr
such that R↔ Ess, Rss = 1 and RAR−1 is a

diagonal matrix with (RAR−1)ss = 0. Therefore

ϕ(A)ss
Claim 1.4.17

= ϕ(RAR−1)ss
Claim 1.4.4

= (RAR−1)ss = 0.

□

By way of induction, suppose that n ≥ 4 and that Theorem 1.4 holds for n− 1.

Claim 1.4.19. There exists an invertible diagonal matrix Λ ∈ D×
n and a map ◦ ∈ {id, ·t}

such that

ϕ(Eij) = ΛE◦
ijΛ

−1, for all Eij ∈ Ak1,...,kr .

Proof. For 1 ≤ s ≤ n consider the map

ϕs : A\s
k1,...,kr

→Mn−1, ϕs(A) = ϕ(A♯(s,0))♭s.

For each such s, the map ϕs is continuous, injective, and preserves spectrum and commuta-
tivity so by the inductive hypothesis we conclude:

• There exists Ts ∈ M×
n−1 and ◦s ∈ {id, ·t} such that ϕs(X) = TsX

◦sT−1
s for all X ∈

A\s
k1,...,kr

.

By Claim 1.4.4, we have

Ejj = ϕs(Ejj) = TsE
◦s
jj T

−1
s = TsEjjT

−1
s

for all 1 ≤ j ≤ n−1 which implies that the matrix Ts is diagonal. Therefore, for all 1 ≤ s ≤ n
we can denote

Ts = diag(ts1, . . . , t
s
s−1, t

s
s+1, . . . , t

s
n)

for some ts1, . . . , t
s
s−1, t

s
s+1, . . . , t

s
n ∈ C×.

By passing to the map Ak1,...,kr →Mn given by([
Tn 0
0 1

]−1

ϕ(·)
[
Tn 0
0 1

])◦n
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which satisfies all the same assumptions as ϕ including ∆ 7→ ∆, we can assume that Tn = I.
In other words

(1.3) ϕ

([
X 0
0 0

])
=

[
X 0
0 0

]
, for all X ∈ A\n

k1,...,kr
= Ak1,...,kr−1,kr−1.

Let us fix 1 ≤ s ≤ n. By considering cases whether i, j are less or greater than s, it is not

hard to show that for all indices i, j ∈ {1, . . . , n} \ {s} such that Eij ∈ A\s
k1,...,kr

we have

(1.4) ϕ(Eij) =

(
tsi
tsj

)±1

E◦s
ij

Suppose 1 ≤ s ≤ n − 1. Then for all distinct indices i, j ∈ {1, . . . , n − 1} \ {s} such that
Eij ∈ Ak1,...,kr we have

Eij
(1.3)
= ϕ(Eij)

(1.4)
=

(
tsi
tsj

)±1

E◦s
ij .

which implies that ◦s is the identity map and that tsi = tsj for all such (i, j). We conclude that

tsi = tsj for all i, j ∈ {1, . . . , n− 1} \ {s}. Without loss of generality we can assume that tsi = 1

for all i ∈ {1, . . . , n− 1} \ {s}.
Now fix 1 ≤ p ̸= s ≤ n− 1 and choose q ∈ {1, . . . , n− 1} \ {p, s}. Then we have

1

tpn
Eqn =

tpq
tpn
Eqn

(1.4)
= ϕ(Eqn)

(1.4)
=

tsq
tsn
Eqn =

1

tsn
Eqn

so tpn = tsn which we can denote simply by tn. In other words, we assumed that for all
1 ≤ s ≤ n− 1 we have

Ts = diag(1, . . . , 1, tn)

and Tn = I.
Now it is easy to see that if we set Λ = diag(1, . . . , 1, tn) ∈ D×

n , we have

ϕ(Eij) = ΛEijΛ
−1, for all Eij ∈ Ak1,...,kr .

□

By passing to the map (Λ−1ϕ(·)Λ)◦ : Ak1,...,kr → Mn which satisfies ∆ 7→ ∆, we can assume
that ϕ(Eij) = Eij for all matrix units Eij ∈ Ak1,...,kr . After doing the same proof as for the
Claim 1.4.19 on this new ϕ, we obtain the following result:

Claim 1.4.20. Let A ∈ Ak1,...,kr be a matrix with s-th row and s-th column equal to zero
for some 1 ≤ s ≤ n. Then ϕ(A) = A.

Proof. Returning to the proof of Claim 1.4.19, the relation (1.4) now implies that Ts = I and
hence ϕs is the identity map. Now we have

ϕ(A) = ϕ((A♭s)♯(s,0)) = ϕs(A
♭s)♯(s,0) = (Abs)♯(s,0) = A.

□

Claim 1.4.21. Let A ∈ Ak1,...,kr be a matrix which is zero outside the first row. Then
ϕ(A) = A.

Proof. Follows as in [27, p. 45]. □

Claim 1.4.22. Let A ∈ Ak1,...,kr be a matrix which is zero outside the n-th column. Then
ϕ(A) = A.
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Proof. For a fixed x = (x1, . . . , xn) ∈ Cn denote

V (x) =


0 · · · 0 x1
0 · · · 0 x2
...

. . .
...

...
0 · · · 0 xn

 .
Consider the map

ψ : Tn →Mn, ψ(X) = ϕ(X⊙)⊙

which, by Claim 2.1, satisfies all assumptions as ϕ including ∆ 7→ ∆. Notice that V (x1, . . . , xn) =
R(xn, . . . , x1)

⊙ so we have

ϕ(V (x1, . . . , xn))
⊙ = ψ(R(xn, . . . , x1))

Claim 1.4.9
= R(xn, . . . , x1)

implying ϕ(V (x1, . . . , xn)) = V (x1, . . . , xn). □

1.4. Rank-one matrices and conclusion. In this section we can assume without loss of
generality that k1 < n as k1 = n implies Ak1,...,kr =Mn.

Claim 1.4.23. Let A ∈ Ak1,...,kr be a rank-one matrix. Then there exists 1 ≤ s ≤ r such
that suppA ⊆ [1, k1 + · · ·+ ks]× [k1 + · · ·+ ks−1 + 1, n].

Proof. Let 1 ≤ s ≤ r be the smallest number such that A exists within rows 1 ≤ i ≤
k1+ · · ·+ks. Then there exists a nonzero element Auv ̸= 0 at the position k1+ · · ·+ks−1+1 ≤
u ≤ k1 + · · ·+ ks and k1 + · · ·+ ks−1 + 1 ≤ v ≤ n.
Denote by S1, . . . , Sn the columns of A. Consider 1 ≤ j ≤ k1 + · · ·+ ks−1. Since A has rank
one, there exists λ ∈ C such that the Sj = λSv. In particular, since A ∈ Ak1,...,kr , we have

0 = Auj = λ Auv︸︷︷︸
̸=0

=⇒ λ = 0

so Sj = 0. This proves the claim. □

Claim 1.4.24. Let A ∈ Ak1,...,kr be a rank-one matrix and assume that 1 ≤ s ≤ r − 1 has
the property that suppA ⊆ [1, k1 + · · ·+ ks]× [k1 + · · ·+ ks−1 + 1, n]. Then ϕ(A) = A.

Proof. Every matrix of the above form can be expressed as

Λxt =



λ1x
...

λk1+···+ksx
0
...
0


for some

(1.5) x =

 0, . . . , 0︸ ︷︷ ︸
k1+···+ks−1

, xk1+···+ks−1+1, . . . , xn

 ∈ Cn \ {0}

and Λ = (λ1, . . . , λk1+···+ks , 0, . . . , 0) ∈ Cn. Note that the last row of Λxt is certainly zero
since s ≤ r − 1.
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For v = (v1, . . . , vn) ∈ Cn let V (v) = vetn be the matrix from Claim 1.4.22. We have

(vetn)(Λx
t) = 0, (Λxt)(vetn) = (xtv)Λetn = V (λ1v

tx, . . . , λk1+···+ksv
tx, 0, . . . , 0)

so if vtx = 0, it follows

Λxt ↔ vetn =⇒ ϕ(Λxt) ↔ ϕ(vetn)
Claim 1.4.22

= vetn.

If we denote

ϕ(Λxt) =

R1
...
Rn

 =

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

 ,
it follows that

(1.6) V (vtR1, . . . , v
tRn) = ϕ(Λxt)vetn = vetnϕ(Λx

t) =
[
bn1v bn2v · · · bnnv

]
.

We can assume v ̸= 0 to conclude bn1 = · · · = bn,n−1 = 0. Therefore Rn = bnnen and we know
that bnn is either zero or equal to Tr(Λxt) =

∑
k1+···+ks−1+1≤j≤k1+···+ks

λjxj .

The map

C →

0,
∑

k1+···+ks−1+1≤j≤k1+···+ks

λjxj

 , u 7→ ϕ(Λ(x1, . . . , xn−1, u)
t)nn

is well-defined and continuous so it is constant. In particular we have

bnn = ϕ(Λxt)nn = ϕ(Λ(x1, . . . , xn−1, 0)
t)nn

Claim 1.4.20
= 0.

Therefore Rn = 0 and from 1.6 we obtain

vtR1 = · · · = vtRn−1 = 0.

Since v ∈ Cn was an arbitrary nonzero vector such that vtx = 0, we conclude R1, . . . , Rn−1 ∈
span{x}. Therefore we can write

ϕ(Λxt) =


µ1x
...

µn−1x
0

 =Mxt

for some vector M = (µ1, . . . , µn−1, 0) ∈ Cn.

For y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ Cn with yn = zn = 0 and ytΛ = ztx = 0 we have

(Λxt)(zyt) = (zyt)(Λxt) = 0 =⇒ Λxt ↔ zyt

and therefore Mxt = ϕ(Λxt) ↔ ϕ(zyt). Furthermore, notice that the matrix zyt has n-th row
and n-th column equal to zero so by Claim 1.4.20 we obtain ϕ(zyt) = zyt.
Now if we assume z ̸= 0, from x ̸= 0 we obtain zxt ̸= 0 and therefore

0 = (Mxt)(zyt) = (zyt)(Mxt) = (ytM) (zxt)︸ ︷︷ ︸
̸=0

which implies ytM = 0. Since y ∈ Cn was an arbitrary vector with the property ytΛ = 0
and yn = 0 (which is not a problem since Mn = Λn = 0, so we might as well remove this
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restriction), it follows that M ∈ span{Λ}. The equality∑
k1+···+ks−1+1≤j≤k1+···+ks

λjxj = Tr(Λxt) = Trϕ(Λxt) =
∑

k1+···+ks−1+1≤j≤k1+···+ks

µjxj

and the fact that
∑

k1+···+ks−1+1≤j≤k1+···+ks
λjxj ̸= 0 imply that M = Λ. Therefore ϕ(Λxt) =

Λxt.
We have proved the desired claim for all matrices Λxt where x ∈ Cn \ {0} is of the form
(1.5) and λ1, . . . , λk1+···+ks ∈ C satisfy

∑
k1+···+ks−1+1≤j≤k1+···+ks

λjxj ̸= 0. Since these form

a dense set, the claim follows in general.
□

Claim 1.4.25. Let A ∈ Ak1,...,kr be a rank-one matrix and assume that suppA ⊆ [1, n] ×
[k1 + · · ·+ kr−1 + 1, n]. Then ϕ(A) = A.

Proof. Consider the map

ψ : Akr,...,k1 →Mn, ψ(X) = ϕ(X⊙)⊙.

By Claim 2.1 we have that ψ satisfies all assumptions as ϕ including ∆ 7→ ∆. Furthermore,
the rank-one matrix A⊙ is now supported only in the first kr rows so by Claim 1.4.24 it follows
ψ(A⊙) = A⊙ and thus we obtain ϕ(A) = A. □

Claim 1.4.26. ϕ acts as identity on rank-one matrices.

Proof. Follows from Claims 1.4.23, 1.4.24 (the cases 1 ≤ s ≤ r − 1) and 1.4.25 (the case
s = r). □

Claim 1.4.27. ϕ is the identity map.

Proof. By density, it suffices to prove that ϕ is the identity map on the set of matrices in
Ak1,...,kr with n distinct eigenvalues. Let S ∈ A×

k1,...,kr
be arbitrary. By Claim 1.4.5, there

exists T ∈M×
n such that

ϕ(SDS−1) = TDT−1, for all diagonal matrices D ∈ Dn.

By Claim 1.4.26 we also have

SEjjS
−1 = ϕ(SEjjS

−1) = TEjjT
−1, 1 ≤ j ≤ n

so by linearity it must be TDT−1 = SDS−1 and consequently

ϕ(SDS−1) = TDT−1 = SDS−1

for all diagonal matrices D ∈ Dn. This proves the claim. □

This completes the inductive step. We conclude that Theorem 1.4 holds for all n ≥ 3.
□

Theorem 4.1. Let A,B ⊆ Mn be two parabolic algebras and let ϕ : A → B be a continuous
injective spectrum and commutativity preserving map. Then one of the following is true:

• A ⊆ B and there exists T ∈ B× such that ϕ(X) = TXT−1 for all X ∈ A.
• A⊙ ⊆ B and there exists T ∈ B×J such that ϕ(X) = TXtT−1 for all X ∈ A.

Proof. Theorem 1.4 implies that there exists T ∈ M×
n and ◦ ∈ {id, ·t} such that ϕ(X) =

TX◦T−1 for all X ∈ A. The rest of the result follows from Proposition 3.2. □
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When we further assume that B = A, so that ϕ : A → A, we can relax the spectrum preserving
assumption to spectrum shrinking (σ(ϕ(X)) ⊆ σ(X) for all X ∈ A). More precisely, we obtain
the following result (similarly as in [31], the proof relies on the invariance of domain theorem).

Corollary 4.2. Let A ⊆Mn be a parabolic algebra and let ϕ : A → A be a continuous injective
commutativity preserving spectrum shrinking map. Then one of the following is true:

• There exists T ∈ A× such that ϕ(X) = TXT−1 for all X ∈ A.
• A⊙ = A and there exists T ∈ A×J such that ϕ(X) = TXtT−1 for all X ∈ A.

Proof. We shall prove that ϕ actually preserves characteristic polynomial so that Theorem
4.1 applies.
By the invariance of domain theorem, the image R = ϕ(A) is an open set in Mn and ϕ|R :
A → R is a homeomorphism. Let E denote the set of all matrices in Mn with n distinct
eigenvalues. As E is dense in Mn, E ∩ R is dense in R.
Now, since ϕ shrinks spectrum, its inverse (ϕ|R)−1 expands spectrum. In particular, the re-
striction (ϕ|R)−1|E∩R preserves characteristic polynomial. Since the characteristic polynomial
k· :Mn → C≤n[x] is a continuous map (Remark 4.0.1), we conclude that the continuous maps

R → C≤n[x] : X 7→ k(ϕ|R)−1(X), and X 7→ kX

are equal on the dense set E ∩ R. Hence, they are equal everywhere so (ϕ|R)−1 preserves
characteristic polynomial. The same follows for ϕ, of course. □

5. Counterexamples

We show the optimality of Theorem 1.4 via counterexamples. In short, all assumptions
except injectivity are indispensable for all parabolic algebras except Mn, while injectivity is
superfluous in the Mn case and necessary in all other cases. We assume n ≥ 3 unless stated
otherwise and let A ⊆Mn be an arbitrary parabolic algebra not equal to Mn.

Example 5.1 (Spectrum shrinking is necessary). Let D be the open unit disk in C and let

g : D → D, g(z) =
1− 3z

3− z
.

It is not difficult to check that g is a holomorphic bijection (actually, it is an involution).
Consider the map

ϕ : A →Mn, ϕ(X) = g

(
X

1 + ∥X∥

)
.

This is well-defined, as for each X ∈ A the matrix X
1+∥X∥ has norm < 1 and hence its spectrum

is contained in D at which point we can apply g using the holomorphic functional calculus.
Using the properties of the holomorphic functional calculus we conclude that ϕ is continuous
and preserves commutativity. Moreover, since the map X 7→ X

1+∥X∥ is injective, via the

application of g−1 = g we conclude that ϕ is injective.
However, ϕ is clearly not linear as

ϕ(0) = g(0) =
1

3
I.

Example 5.2 (Commutativity preserving is necessary). Consider the map

f :Mn →M×
n , X 7→ (edetX , 1, . . . , 1).

The map
ϕ : A →Mn, ϕ(X) = f(X)Xf(X)−1
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is continuous and preserves spectrum. Moreover, since f is a similarity invariant and ϕ(X) is
similar to X, we can see that ϕ is bijective with the inverse Y 7→ f(Y )−1Y f(Y ). However, ϕ
is not linear: clearly ϕ acts as the identity on diagonal matrices and singular matrices, so we
have

ϕ(I + E12) = I + eE12 ̸= I + E12 = ϕ(I) + ϕ(E12).

Example 5.3 (Continuity is necessary). Consider the map ϕ : A →Mn given by

ϕ(X) =

{
diag(λ2, λ1, . . . , λn), if X = diag(λ1, . . . , λn) and all λi are distinct,

X, otherwise

which is bijective, spectrum and commutativity preserving but clearly not continuous. This
example is taken from [28].

Example 5.4 (Injectivity is necessary). Consider the map

ϕ : A →Mn,


X11 X12 · · · X1n

0 X22 · · · X2n
...

...
. . .

...
0 0 · · · Xrr

 7→


X11 0 · · · 0
0 X22 · · · 0
...

...
. . .

...
0 0 · · · Xrr

 .
Then ϕ is clearly a unital Jordan homomorphism (and hence satisfies all assumptions of
Theorem 1.4), but is not injective.

Example 5.5 (n ≥ 3 is necessary). This is also an example from [28]. Let f : [0,+∞⟩ → [1, 2]
be a nonconstant continuous map such that limx→+∞ f(x) = 1. For specificity we can consider

f(x) = 1 +
1

1 + x
.

Consider the map ϕ :M2 →M2 given by

A =

[
a b
c d

]
7→ ϕ(A) = SAAS

−1
A , where SA =


I, if b = 0,[
f
(∣∣ c

b

∣∣) 0

0 1

]
, otherwise.

Then ϕ is a continuous injective spectrum and commutativity preserving map, but is clearly
not linear.

A similar example of a map ϕ : T2 →M2 can be found in [26].
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